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In view of the continuity of «, the following immediate consequence of
Proposition 3.4 is somewhat analogous to a mean value theorem.

COROLLARY 3.5. Denote by Kmin and FKmex the minimum and the
maximum, respectively, of the curvature of 0D. Then

Kmin S K(x,y, Z) S Kmax »

for any three boundary points x,y,z.

3.2 THE PROOF OF THEOREM 3.1

Assume that D is as in the theorem. To simplify the notation we will only
discuss the 3-dimensional case. Each 2-dimensional plane section is Gromov
hyperbolic by the above so we only need an overall bound for constants J(S)
when S runs through all the plane sections. The intersection of 0D with a
2-dimensional plane gives rise to a smooth planar curve «, which we assume
i1s parameterized by arclength. The constant ¢ of the hyperbolicity depends
on the curvature of a. These curves could have an arbitrarily large curvature
but we need only to bound from above (and hence from below) the ratio of
the curvatures at different points of the curve. The curvature vector «o’'(¢) of
o at a point x = «(f) lies in this plane and is orthogonal to «'(¢). Thus we

|a”(t)|

need to bound the ratio FAOIR It 1s a fact (Meusnier’s lemma, see [KI178,
p.43] that
k(' (1) = | (1)] cos 6(2)

where k(a/(1)) = IL(c/(f), &/ (¢)) is the normal curvature in the direction /()
and 6(¢) is the angle between «/(f) and the normal of 6D at x. In view
of the assumption (3.1) and Corollary 3.5 we therefore need to bound the

ratio %g% independently of s,7# and «. Near any point x the surface 6D

is the graph of a C? function z = f(x,y) in suitable Cartesian coordinates.
Hence any small plane section C, is given by the equation f(x,y) =& > 0.
Expressing 6 in terms of f we arrive at the problem of bounding the ratio of
the gradients Igﬁgg: along the section. By rotation in the xy-plane we may
assume that the x- and y-axis are along the direction of principal curvature.
By developing f(x,y) into a Taylor’s expansion around the origin, we obtain
f(x,y) = 3(ax® + by?) + r, where r vanishes at (0,0) together with all its
derivatives up to second order, and where a = £.,(0,0),b = f»(0,0) are the

principal curvatures. We conclude that ¢ < &9 — ¢ pear 0 for universal

A /x2+y2

. . . 2 2
¢,C > 0 and thus it remains to bound the ratio %7 on C.. But this ratio
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is bounded in view of the estimate x~!(x*> + y?) < f(x,y) < k(x* +y?) for
some universal x > 0 and of the fact that f(x,y)=¢ on C.. []

4. CONSEQUENCES OF GROMOV HYPERBOLICITY
FOR THE SHAPE OF THE BOUNDARY

PROPOSITION 4.1. Let D be a bounded convex domain in R" and let h
be a Hilbert metric on D. If h is Gromov hyperbolic then the boundary 0D
is strictly convex, that is, it does not contain a line segment.

This can be proven following the proof of N. Ivanov [Iv97] of Masur-Wolf’s
theorem [MW95] that the Teichmiiller spaces (genus > 2) are not Gromov
hyperbolic. The proof makes use of Gromov’s exponential divergence criterion,
see [BH99, p.412]. For another proof of the above proposition, see [SMO00].

THEOREM 4.2. Let D be a bounded convex domain in R" and let h be
the Hilbert metric on D. If h is Gromov hyperbolic then the boundary 0D
is smooth of class C'.

Proof. 2-dimensional case: First, by the previous result, D is strictly
convex. Let y = f(x), x € (—a,a) be an equation of JD near some point.
Then f is strictly convex and hence the one-sided derivatives f’(x), fi(x)
exist and are strictly increasing on (g,¢), [RV73, §11].

We prove that f’ (0) = f1.(0). Suppose not, then by choosing appropriate
Cartesian coordinates we may assume that f’(0) < O and fi(0) > 0. For
each sufficiently small € construct an ideal triangle A = A(e) in D with one
vertex 0 and two other vertices corresponding to the intersection of the line
y = ¢ with OD. We assert that the slimness of A(g) tends to oo when &
tends to zero. Namely we show that the Hilbert distance between the point
P = (0,¢) and any point Q of the side [0, B] tends to co. Let f J’F(O) =tan o,
0 < a<m/2.Let x; < x, be the points such that f(x;) = ¢ and f1 (0)x, = €.
Then

PQ > ecosa = f(x;)cosc.

Let O,R be the intersection points of the line PQ with 0D. We have
therefore ,
fo) _ fa) =1 0)x
Ty =
J40) f1(0)

and hence, combining the last two inequalities,

QR < x; —x; =
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