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3. INTERSECTING CHORDS THEOREM FOR CONVEX C?-DOMAINS

Assume that D is a bounded, convex domain in R? with C?-smooth
boundary. Let p be a C?-defining function for D, that is, p is pqsitive on
points in D, negative outside D and zero on OD. Moreover the gradient
Vp =: v(x) is a unit vector field normal to OD directed inside D. The
curvature (or Weingarten) operator W,: T,0D — T,0D 1is by definition the
directional derivative of v in the direction v. The second fundamental form
is the bilinear form II, on T,0D given by

n

0%p
I (v, w) = (w, Wi(v)) = iJZ:] mviwj-
The value II,(u,u) =: k,(u) is called the normal curvature of 0D at x in the
direction of the unit tangent vector u. We will assume that the curvature of
0D is everywhere nonzero, meaning that II is everywhere positive definite,

so there is a constant kp > 0 such that
3.1) kp' < ke(u) < kp

for every u € UT,0D and x € 0D.
In this section we will establish:

THEOREM 3.1. Let D be a bounded convex domain in R". Suppose that
the boundary 0D is smooth of class C* and the curvature of OD is everywhere
nonzero. Then there is a constant C > 0 such that

c! < M <C
Kx',y',2')
for any two triples of distinct points in OD all lying in the same 2-dimensional
plane.

In view of Corollary 1.2 and Theorem 2.1 this implies:

COROLLARY 3.2. Let D be as above. Then D has the intersecting chords
property and (D, h) is Gromov hyperbolic.

3.1 THE TWO-DIMENSIONAL CASE

For this subsection, let D be a convex, bounded domain in R? with
C?-boundary curve OD. Assume in addition that the differential geometric
curvature k is positive (nonzero) at every point of OD.
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LEMMA 3.3. The Menger curvature K(x,y,z) of three points extends to
a continuous function on 0D x OD x OD. The value K(x,x,z) equals the
curvature of the circle tangent to OD at x and passing through z, and the
value K(x,x,x) equals r(x).

Proof. The continuity for three distinct points is clear. When three points
converge to one point on the boundary, it is a standard fact that K converges
to x, see [Sp78, Ch.1], or [BGS8S, p.304 or p.306]. When y, converges to
X # z, then d(y;,z) — d(x,7) and sin Z(y.x, xz) — sin Z(T,0D, xz). This proves
the continuity and it is clear that the limit circle is tangent to dD at x. [

The idea of the proof of the following proposition was supplied to us by
M. Bucher.

PROPOSITION 3.4. Let (x,y,z) be a global minimum or maximum point
for K on 0D x 0D x 0D. Then OD contains the shortest circle arc connecting
x,y and z.

Proof. Recall the formula (1.2) and consider the circle in question through
the three boundary points x,y,z with extremal, say maximal, radius. Denote
by  a shortest arc on this circle connecting these three points, and assume
that x and z are the boundary points of .

In the case x = y = z there is nothing to prove. Assume now that the
three points are all distinct and consider first a potential boundary point w
between v and xz. By convexity of D it cannot lie inside the triangle xyz.

If ~ is larger than a halfcircle, then note that (depending on which region
w belongs to) either R(x,w,y) > R(x,y,z) or R(z,w,y) > R(x,y,z) (compare
the angle at w with the one at either z or x). Therefore w cannot belong to
OD. If ~ is less than a half-circle, then, again by looking at the angles and
using the formula for R, we have R(x,w,z) > R(x,y,z), for any such w.

Secondly, note that a potential boundary point w outside the circle in the
half-plane defined by the line through x and z containing y cannot belong
to 0D, because either R(w,y,z) or R(x,y,w) (depending on where w lies)
is greater than R(x,y,z). Hence the arc v must coincide with an arc of 0D.

In the case x = y # z, no point outside the circle can lie on 0D, again by
the assumption on the maximality of the radius. On the other hand, a point
w between ~y and xz cannot belong to 0D because R(x,w,z) > R(x,x,z),
and again we have the desired conclusion.

The case of maximal curvature can be treated analogously. [
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In view of the continuity of «, the following immediate consequence of
Proposition 3.4 is somewhat analogous to a mean value theorem.

COROLLARY 3.5. Denote by Kmin and FKmex the minimum and the
maximum, respectively, of the curvature of 0D. Then

Kmin S K(x,y, Z) S Kmax »

for any three boundary points x,y,z.

3.2 THE PROOF OF THEOREM 3.1

Assume that D is as in the theorem. To simplify the notation we will only
discuss the 3-dimensional case. Each 2-dimensional plane section is Gromov
hyperbolic by the above so we only need an overall bound for constants J(S)
when S runs through all the plane sections. The intersection of 0D with a
2-dimensional plane gives rise to a smooth planar curve «, which we assume
i1s parameterized by arclength. The constant ¢ of the hyperbolicity depends
on the curvature of a. These curves could have an arbitrarily large curvature
but we need only to bound from above (and hence from below) the ratio of
the curvatures at different points of the curve. The curvature vector «o’'(¢) of
o at a point x = «(f) lies in this plane and is orthogonal to «'(¢). Thus we

|a”(t)|

need to bound the ratio FAOIR It 1s a fact (Meusnier’s lemma, see [KI178,
p.43] that
k(' (1) = | (1)] cos 6(2)

where k(a/(1)) = IL(c/(f), &/ (¢)) is the normal curvature in the direction /()
and 6(¢) is the angle between «/(f) and the normal of 6D at x. In view
of the assumption (3.1) and Corollary 3.5 we therefore need to bound the

ratio %g% independently of s,7# and «. Near any point x the surface 6D

is the graph of a C? function z = f(x,y) in suitable Cartesian coordinates.
Hence any small plane section C, is given by the equation f(x,y) =& > 0.
Expressing 6 in terms of f we arrive at the problem of bounding the ratio of
the gradients Igﬁgg: along the section. By rotation in the xy-plane we may
assume that the x- and y-axis are along the direction of principal curvature.
By developing f(x,y) into a Taylor’s expansion around the origin, we obtain
f(x,y) = 3(ax® + by?) + r, where r vanishes at (0,0) together with all its
derivatives up to second order, and where a = £.,(0,0),b = f»(0,0) are the

principal curvatures. We conclude that ¢ < &9 — ¢ pear 0 for universal

A /x2+y2

. . . 2 2
¢,C > 0 and thus it remains to bound the ratio %7 on C.. But this ratio
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