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3. Intersecting chords theorem for convex C2-domains

Assume that D is a bounded, convex domain in R" with C2 -smooth

boundary. Let p be a C2-defining function for D, that is, p is positive on

points in D, negative outside D and zero on dD. Moreover the gradient

Vp =: v(x) is a unit vector field normal to dD directed inside D. The

curvature (or Weingarten) operator Wx : TxdD —> TxdD is by definition the

directional derivative of v in the direction v. The second fundamental form
is the bilinear form IIx on TxdD given by

The value IIx(u, u) =: kx(u) is called the normal curvature of 3D at x in the

direction of the unit tangent vector u. We will assume that the curvature of
dD is everywhere nonzero, meaning that II is everywhere positive definite,
so there is a constant kD > 0 such that

for every u G UTxdD and x G dD.
In this section we will establish:

THEOREM 3.1. Let D he a bounded convex domain in R". Suppose that
the boundary dD is smooth of class C2 and the curvature of dD is everywhere
nonzero. Then there is a constant C > 0 such that

for any two triples of distinct points in dD all lying in the same 2-dimensional
plane.

In view of Corollary 1.2 and Theorem 2.1 this implies:

COROLLARY 3.2. Let D be as above. Then D has the intersecting chords
property and (D,h) is Gromov hyperbolic.

3.1 The two-dimensional case

For this subsection, let D be a convex, bounded domain in R2 with
C2-boundary curve dD. Assume in addition that the differential geometric
curvature k is positive (nonzero) at every point of dD.

(3.1) kD
1 < kx(u) < kD
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LEMMA 3.3. The Menger curvature K(x,y,z) of three points extends to

a continuous function on dD x dD x dD. The value K(x,x,z) equals the

curvature of the circle tangent to dD at x and passing through z, and the

value K{x,x,x) equals n(x).

Proof The continuity for three distinct points is clear. When three points

converge to one point on the boundary, it is a standard fact that K converges
to k, see [Sp78, Ch. 1], or [BG88, p. 304 or p. 306]. When yt converges to

then d(yt,z) —» d(x,z) and sinZ(yrx,xz) —> sinZ(TxdD,xz). This proves
the continuity and it is clear that the limit circle is tangent to dD at x.

The idea of the proof of the following proposition was supplied to us by
M. Bucher.

PROPOSITION 3.4. Let (x,y, z) be a global minimum or maximum point
for K on dD x dD x dD. Then dD contains the shortest circle arc connecting

x,y and z.

Proof Recall the formula (1.2) and consider the circle in question through
the three boundary points x,y,z with extremal, say maximal, radius. Denote

by 7 a shortest arc on this circle connecting these three points, and assume
that x and z are the boundary points of 7.

In the case x y z there is nothing to prove. Assume now that the

three points are all distinct and consider first a potential boundary point w
between 7 and xz. By convexity of D it cannot lie inside the triangle xyz.

If 7 is larger than a halfcircle, then note that (depending on which region
w belongs to) either R(x,w,y) > R(x,y,z) or R(z,w,y) > R(x,y,z) (compare
the angle at w with the one at either z or x). Therefore w cannot belong to
dD. If 7 is less than a half-circle, then, again by looking at the angles and

using the formula for R, we have R(x,w,z) > /?(x,y,z), for any such w.
Secondly, note that a potential boundary point w outside the circle in the

half-plane defined by the line through x and z containing y cannot belong
to dD, because either R(w,y,z) or R(x,y,w). (depending on where w lies)
is greater than R(x, y, z). Hence the arc 7 must coincide with an arc of dD.

In the case x y^z, no point outside the circle can lie on dD, again by
the assumption on the maximality of the radius. On the other hand, a point
w between 7 and xz cannot belong to dD because R(x,wrz) > R(x,x, z),
and again we have the desired conclusion.

The case of maximal curvature can be treated analogously.
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In view of the continuity of the following immediate consequence of

Proposition 3.4 is somewhat analogous to a mean value theorem.

COROLLARY 3.5. Denote by Kmin and Kmax the minimum and the

maximum, respectively, of the curvature of dD. Then

^miri < K(x,y,z) < l^max •>

for any three boundary points x,y,z.

3.2 The proof of Theorem 3.1

Assume that D is as in the theorem. To simplify the notation we will only
discuss the 3-dimensional case. Each 2-dimensional plane section is Gromov

hyperbolic by the above so we only need an overall bound for constants 5{S)

when S runs through all the plane sections. The intersection of dD with a

2-dimensional plane gives rise to a smooth planar curve a, which we assume
is parameterized by arclength. The constant Ö of the hyperbolicity depends

on the curvature of a. These curves could have an arbitrarily large curvature
but we need only to bound from above (and hence from below) the ratio of
the curvatures at different points of the curve. The curvature vector a"{t) of
a at a point x — a(t) lies in this plane and is orthogonal to aft). Thus we

It is a fact (Meusnier's lemma, see [K178,i i • « (0
need to bound the ratio \a"(s)
p. 43] that

kx{a'(t))|a"(f)| cos

where kx(a'(t)) llx(a!{t),a'it)) is the normal curvature in the direction
and 6{t)is the angle between a"it) and the normal of at x. In view
of the assumption (3.1) and Corollary 3.5 we therefore need to bound the
ratio Hfjfy independently of s,tanda. Near any point x the surface dD
is the graph of a C2functionz fix. y) in suitable Cartesian coordinates.
Hence any small plane section Ce is given by the equation f(x,y) 0.
Expressing 6 in terms of / we arrive at the problem of bounding the ratio of
the gradients [y^j along the section. By rotation in the -plane we may
assume that the x- and y-axis are along the direction of principal curvature.
By developing fix.y) into a Taylor's expansion around the origin, we obtain
f(x,y)— I (ax2 + by2) + r, where r vanishes at (0,0) together with all its
derivatives up to second order, and where a fxx(0,0), b 0) are the

principal curvatures. We conclude that c < ^^7==< C near 0 for universal
\A2+y2

c, C >0 and thus it remains to bound the ratio A+ya on cs But this ratio



84 A. KARLSSON AND G. A. NOSKOV

is bounded in view of the estimate k l(x2 + y2) < f(x,y) < k(x2 + y2) for
some universal k > 0 and of the fact that /(x, y) — e on C£.

4. Consequences of Gromov hyperbolicity
FOR THE SHAPE OF THE BOUNDARY

PROPOSITION 4.1. Let D be a bounded convex domain in Rn and let h

be a Hilbert metric on D. If h is Gromov hyperbolic then the boundary dD
is strictly convex, that is, it does not contain a line segment.

This can be proven following the proof of N. Ivanov [Iv97] of Masur-Wolf's
theorem [MW95] that the Teichmüller spaces (genus > 2) are not Gromov

hyperbolic. The proof makes use of Gromov's exponential divergence criterion,
see [BH99, p. 412]. For another proof of the above proposition, see [SMOO].

THEOREM 4.2. Let D be a bounded convex domain in R" and let h be

the Hilbert metric on D. If h is Gromov hyperbolic then the boundary dD
is smooth of class C1.

Proof 2-dimensional case : First, by the previous result, D is strictly
convex. Let y /(x), x G (—a, a) be an equation of dD near some point.
Then / is strictly convex and hence the one-sided derivatives f'_(x), f'+{x)
exist and are strictly increasing on (e, e), [RV73, §11].

We prove that f!_(0) /+(0). Suppose not, then by choosing appropriate
Cartesian coordinates we may assume that 0) < 0 and /+(0) > 0. For
each sufficiently small e construct an ideal triangle A A(e) in D with one

vertex 0 and two other vertices corresponding to the intersection of the line

y s with dD. We assert that the slimness of A(e) tends to po when s

tends to zero. Namely we show that the Hilbert distance between the point
p (0, e) and any point Q of the side [0,#] tends to oo. Let jCJ_(0) tana,
0 < a < 7t/2. Let x\ < X2 be the points such that f(x\) — e and /^(0)x2 e.
Then

PQ > s cos a =/(xi) cos a

Let 0,R be the intersection points of the line PQ with dD. We have

therefore
/Ol)

ÖT*= m
and hence, combining the last two inequalities,
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