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78 A. KARLSSON AND G. A. NOSKOV

is compact. Hence there is a constant ceo > 0 such that

(1.4) Go < ce(x,y, u) < 7r — ceo

for every (x,y, v) G S. By the definition of the tangent cone and compactness
there is an e > 0 such that for any y, z G dD, 0 < yz < £ there is an element

v G UTy(dD) for which

(1.5) 0 < Zy(yz,v)< a0/2.

The estimates (1.4) and (1.5) imply the existence of C > 0 and the other

inequality in (1.3) is trivial.

As an immediate consequence of Propositions 1.1 and 1.4 we have :

COROLLARY 1.5 (cf. [Be99]). Let D be a bounded convex domain such

that any line segment in dD has length less than 5' < 8. Then the intersecting
chords property holds for any two chords each of length greater than 8.

2. Hyperbolicity of Hilbert's metric

Let (7, d) be a metric space. Given two points z, w G Y, let

(z I w)y ^(d(z,y)+ d(w,y)- w))

be their Gromov product relative to y. We think of y as a fixed base point.
The metric space Y is Gromov hyperbolic (or 8-hyperbolic) if there is a

constant 8 > 0 such that the inequality

(x I z)y > min{(x | w)y, (w | z)^} - 8

holds for any four points *,y,z, w in Y. As is known, it is enough to show

such an inequality for a fixed y (the 8 changes by a factor of 2); see [BH99]
for a proof of this and we also refer to this book for a general exposition
of this important notion of hyperbolicity. By expanding the terms the above

inequality is equivalent to

(2.1) d(x, z) + d(y, w) < max{<i(x, y) + d(z, w), d(y, z) + d(x, u;)} + 28
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THEOREM 2.1. Let D be a bounded convex domain in Rn satisfying
the intersection chords property. Then the metric space (Z), h) is Gromov

hyperbolic.

Proof. Suppose that the intersecting chords property holds with a constant
M. Let y be a fixed reference point and consider any other three points x,z, w
in D. Set A(u,v) h{u,v) + h(w,y) — h(u,w) — h(v,y) for any two points

u,v. By (2.1) we need to show that there is a constant 5 independent of
x, z, w such that

(2.2) min{A(x, z), A(z, x)} < 25.

Figure 3

Four points

Using the definition of h and the notation in Fig. 3, we have (by rearranging
the terms of the product)

AC x,z)log(W ^yL)
\xx"z.z!' ww"xw' wx' J

log
xx1 • xz" yy' yw" wy"

yxx" xw' yy" yz' zz" zy' ww" wx'

Hence, by using ^ < M^andsimilar inequalities for the other fractions,

A(x,z)<M'+2iog(^ytal"Y)
\xw' yz' zy' wx' J

Now, y is fixed and zy',wy" are bounded from above and below respectively,
so that

A(x, z) < M" + 2 log
xz" zx"

xw' • wx'
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So (2.2) is equivalent to the boundedness of

min I XZ" ZX" ZX" XZ" \\ xw' • wx' ' zw'" - wz!" J

from above. By symmetry we may assume without loss of generality that
zz" < xx". Now we have two cases :

Case 1 : xw > xx" or zw > xx".
If xw > zic (so in particular xu> > xx" then

xz" - zx"
^ (xz + zz"){zx + xx")

xw' • wx' ~~ {xw)1

<
{xw + WZ + zz")(zw + WX + xx") ^

(3xw)2
^ ^

{xw)2 ~ {xw)2 ~

When zw > xw, we estimate the other fraction instead (obtained by
interchanging x and z) in the same way.

CASE 2 : xw < xx" and zw < xx".
Considering chords at x we have

xz" zx"
<

xx! - zx"
^

xx7 (xtc + wz + xx7/)
^

xw' • wx' ~~ xx" • wx' ~~ wx' xx"

since xx" • xz" < M{xx' • xw').

Remark 2.2. Since the n -dimensional ball Bn obviously satisfies the

assumption in Corollary 1.2 with C 1, Theorem 2.1 contains the standard

fact that {Bn,h), which is Klein's model of the n-dimensional hyperbolic

space, is Gromov hyperbolic.

Remark 2.3. The above proof does not appeal to compactness and

therefore goes through in infinite dimensions provided that y lies at positive
distance from the boundary. In particular, it proves that the unit ball in a Hilbert

space with the Hilbert metric, which is the infinite dimensional hyperbolic

space, is Gromov hyperbolic. Note however that ICP is not affinely invariant

in infinite dimensions. (Kaimanovich brought this remark to our attention.)
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