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COROLLARY 1.2. Let D be a bounded convex domain in R". Assume that
there is a constant C > 0 such that

Kxy.2 _ -

K(x',y'2') —
for any two triples of distinct points in D all lying in the same 2-dimensional
plane. Then D satisfies the intersecting chords property.

Proof. Any two intersecting chords define a plane and by Proposition 1.1

we have KoK
aray _ Balllo2 < Cz. B
blbz KﬁlKlgz

REMARK 1.3. In view of this subsection it is clear that ICP implies
restrictions on the curvature of the boundary, e.g. there cannot be any points
of zero curvature. We were however not able to establish the converse of
Corollary 1.2.

1.2 CHORDS LARGER THAN §

The following proposition provides a different approach to the result in
[Be97] mentioned above.

PROPOSITION 1.4. Let D be a bounded convex domain in R". Let § be
such that the length of any line segment contained in OD is bounded from
above by some §' < 6. Then there is a constant C = C(D, ) > 0 such that

(1.3) C(D,0) < K(x,y,2) <

S| N

whenever x,y,z € 0D and xy > 6.

Proof. The angle «a(x,y,v) := Z,(xy,v) is continuous in x,y € R" and
v € UT,(OD), the unit tangent cone at y. The tangent cone at a boundary
point y is the union of all hyperplanes containing y but which are disjoint
from D. If [x,y] does not lie in dD, then 0 < a(x,y,v) < 7. The set

S = {(x,y,v) € 0D x 0D x UT,(OD) : xy > 6}
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i1s compact. Hence there is a constant oy > 0 such that
(14) 87)) SCV,(X,)],/U) < T —

for every (x,y,v) € S. By the definition of the tangent cone and compactness
there is an € > 0 such that for any y,z € 9D, 0 < yz < ¢ there is an element
v € UT,(0D) for which

(1.5) 0 < Zy(yz,v) < /2.
The estimates (1.4) and (1.5) imply the existence of C > 0 and the other
inequality in (1.3) is trivial. [

As an immediate consequence of Propositions 1.1 and 1.4 we have:

COROLLARY 1.5 (cf. [Be99]). Let D be a bounded convex domain such
that any line segment in OD has length less than §' < §. Then the intersecting
chords property holds for any two chords each of length greater than J.

2. HYPERBOLICITY OF HILBERT’S METRIC

Let (Y,d) be a metric space. Given two points z,w € Y, let

1
(z | w)y = E(d(z,y) + d(w,y) — d(z, w))

be their Gromov product relative to y. We think of y as a fixed base point.
The metric space Y is Gromov hyperbolic (or ¢-hyperbolic) if there is a
constant § > 0 such that the inequality

(x| z)y > min{(x | w)y, (w | 2)y} — 0

holds for any four points x,y,z,w in Y. As is known, it is enough to show
such an inequality for a fixed y (the 6 changes by a factor of 2); see [BH99]
for a proof of this and we also refer to this book for a general exposition
of this important notion of hyperbolicity. By expanding the terms the above
inequality is equivalent to

2.1)  dx,2) +d@,w) < max{d(x,y) + d(z,w),d(,2) + d(x,w)} + 26 .
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