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We say that a domain satisfies the intersecting chords property (ICP) if
(1.1) holds for any two intersecting chords c¢; and c,. It is easy to see that
ICP may fail for a general strictly convex domain (at a curvature zero point
or a ‘corner’).

We show in this section that ICP holds for domains that satisfy a
certain (non-differentiable) curvature condition. Domains with C? boundary
of nonvanishing curvature are proved to satisfy this condition in Section 3.

1.1 INTERSECTING LINE SEGMENTS AND MENGER CURVATURE

This subsection clarifies the relation between the curvature of any triple of
endpoints and the ratio considered above that two intersecting line segments
define.

Three distinct points A, B and C in the plane, not all on a line, lie on a
unique circle. Recall that the radius of this circle is

(1.2) RA,B,C) = —

2sin-y’
where c 1s the length of a side of the triangle ABC and -~y is the opposite
angle. The reciprocal of R is called the (Menger) curvature of these three
points and is denoted by K(A, B, C).

Now consider two intersecting line segments as in Fig. 2.

Aq B
a bl
b2 an
B, A,
FIGURE\ 2

Intersecting line segments

PROPOSITION 1.1. In the above notation, the following equality holds : |

a1ay K(A1,B1,B2)K(A, By, By)
ble K(B17A17A2)K(BZ7A17A2)

Proof. Let «; be the angle between the line segments A;B; and B1B;,
and let [3; be the angle between B;A; and A;A,, for {i,j} = {1,2}. By the
sine law we have
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aja; _ sinaisinag  2sinoy |A2B,| 2sinay |A1Bi]
bib, sinBxsinf;  |A1Bi| 2sin By |A2B,| 2sin B
_ K(Ay,B1,B2)K(Az, By, By) =
K(Bi,A1,A2)K(B;,A1,A>)

COROLLARY 1.2. Let D be a bounded convex domain in R". Assume that
there is a constant C > 0 such that

Kxy.2 _ -

K(x',y'2') —
for any two triples of distinct points in D all lying in the same 2-dimensional
plane. Then D satisfies the intersecting chords property.

Proof. Any two intersecting chords define a plane and by Proposition 1.1

we have KoK
aray _ Balllo2 < Cz. B
blbz KﬁlKlgz

REMARK 1.3. In view of this subsection it is clear that ICP implies
restrictions on the curvature of the boundary, e.g. there cannot be any points
of zero curvature. We were however not able to establish the converse of
Corollary 1.2.

1.2 CHORDS LARGER THAN §

The following proposition provides a different approach to the result in
[Be97] mentioned above.

PROPOSITION 1.4. Let D be a bounded convex domain in R". Let § be
such that the length of any line segment contained in OD is bounded from
above by some §' < 6. Then there is a constant C = C(D, ) > 0 such that

(1.3) C(D,0) < K(x,y,2) <

S| N

whenever x,y,z € 0D and xy > 6.

Proof. The angle «a(x,y,v) := Z,(xy,v) is continuous in x,y € R" and
v € UT,(OD), the unit tangent cone at y. The tangent cone at a boundary
point y is the union of all hyperplanes containing y but which are disjoint
from D. If [x,y] does not lie in dD, then 0 < a(x,y,v) < 7. The set

S = {(x,y,v) € 0D x 0D x UT,(OD) : xy > 6}
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