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4. The triple ratio on S

We return to the notation introduced in Sections 1 and 2.

For zi,Z2,Z3 £ Mat(p x q, C) define, whenever it makes sense, the element

T(z\,Z2,Z3) £ GLfoC) by the following formula

(24) T(ZUZ2,Z3) k(ZuZ2)k(Z3,Z2)~1k(Z3,Z\)

(L - zlziT\lq - £za - ZÏZ3)-1

It satisfies the following transformation law

(25) T(g(zi), g(z2), g(z3)) =j(g,z\)*
for g EG. In particular, we see that 7Yoi, 02,0*3) is well defined on S\ and

that the GL(q,C)-orbit of T(o\, 02, a3) is constant along any G-orbit in S\.

Lemma 4.1. Let a (^v) - S,tranverse to ie and —ie. Then

(26) T(ie,-ie,a) ~(il + aq)(lq + 1

Proof. This is an easy computation.

Proposition 4.2. Let (0-1,0-2,0-3) e 5^. Then

—(r)
2i T(aua2,a3) £ Tq

Proof. Let us first assume a\ ie, a2 —ie,a2 a. Except for the

factor j., a comparison with (9) shows that T(ie, —ie,a) is the first term of

the Cayley transform of cr. More precisely, let c(cr) £ ^^ Then we

may rewrite (26) as

1

2?T(ie, —ie,a) —^

Now £ belongs to CS, and hence ^(£g - ££) £'*£'. But rank(£') < r, so
~{t)

rank(£M£0 < r and hence £q belongs to Tq Now the transformation law

(25) for the triple ratio implies that for any (ai,a2, cr3) G S\, 2/ T(g%,<j2, erf)

belongs to Tq\
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Theorem 4.3. Let (0-1,02,0-3) and (n,72,73) belong to Sy. They belong

to the same G-orbit if and only if 7X0*1,02, 03) and T(t\,T2,t3) belong to

the same GL(g, C) -orbit.

Proof One way is obvious from the transformation law (25) for the

triple ratio. For the converse, we assume (as we may) that g\ — t\ ie

and cr2 — 72 -ie, and set for simplicity a a3 and r 73. Then the

assumption implies that (zl^ + 0g)(lg — i&q)~l and (ilq + rq){lq — irq)~l are

in the same GL(g, C)-orbit. By Lemma 2.3, c(a) and c(r) are in the same

CL-orbit. So a and r are in the same L-orbit.

Now to give a description of the invariant in terms of Theorem 3.13, we

need to define the analog of the function arg det. For z\ G D and Z2 £ D, the

function k^zutf) (1q ~ zlz\)~l is well defined and belongs to GL(g, C).
So we can extend the definition of T to the set

£>t {(-£1 )Z2-)£3) I Zi G DUS, 1 < i < 3, zfT'zi, zfT'zi}

where by definition z~T'w is satisfied if z or w belongs to D, and reduces

to the condition zTw if both z and tp belong to S. As Dy is stable by
{.ztj Z2j Z3) »-> (tzi,tz2,tz3) for 0 < ï < 1, this is a simply connected set. For

zi G D, detT(zi,zi,Zi) is a positive real number. So there is a well defined

continuous determination of the argument of defiT(zi, zi, Z3)) on Dy such that

it takes the value 0 whenever z\ — Z2 zz G D. Denote this determination by
argdetr(zi,z2?^3)- It is clearly invariant under the G-action, and so it defines

an invariant for the G-orbits.

On the other hand, let

S{Z\,Z2,zf) T{zuZ2,Z3T 1T(zuZ2iZ3)

be the angular matrix associated to T(z\,Z2,z3).

THEOREM 4.4. Let (0-1,0-2,0-3) and 60,7-2,7-3) belong to S'y. They belong
to the same G-orbit if and only if S(a\, 0*2,0-3) and S{tx r2,73) are conjugate
under GL{q, C) and arg det T{cr\, 02,0*3) arg det T(t\ T2, r3).

Proof This is a direct consequence of Theorem 4.3 and Theorem 3.13.

Remark 1. Let us consider the case where q 1. The Stiefel manifold
is the unit sphere S2/?_1 in Cp. The transversality condition oTt just means
0- 7^ r, as is easily seen from the Cauchy-Schwarz inequality. The triple ratio
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is the complex number

r(<7l,<72,<73) (1 - vfarHl ~ 0->3)(l "
The group GL(q, C) ~ C* acts on the upper halfplane by (A, z) |A|2z and

so the orbits are described by the argument of the complex number z. So the

characteristic invariant in this case is just

arg ((1 - - <t2V3)( 1 - crfo)"1)

It is equivalent to the invariant 6 considered in [KR]. This invariant, almost
in our terms, was known to E. Cartan (see [Ca]).

Remark 2. Let us consider the case where p q. Then the Stiefel manifold

is U(q), and the content of Proposition 4.2 is that for (<ri, cr2,03) e S\

T(cri,0-2,0-3)(1 - o-20-i)-1(l - O-|<J3)(1 - of03)^

is an invertible skew-Hermitian matrix. The orbits of GL(g, C) in its action

on nondegenerate Hermitian forms are characterized by the signature. So the

characteristic invariant as described in Theorem 4.3 in this case reduces to

sgniT(cri,<T2,0"3), As concerns Theorem 4.4, notice that the invariant S is

trivial (equal to — 1q), so one is only concerned with the invariant argdet T.
The bounded domain D is of tube type and the description of the invariant

through the function argdet coincides with the approach of this problem
in [C0], where the invariant was introduced under the name of generalized
Maslov index.
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