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2. Action of G on S x S and S x S x S

We now study the action of G on pairs of points of S. The main notion to

be introduced is transversality, a notion that could be defined for any bounded

symmetric domain. We give several equivalent definitions for our case.

PROPOSITION 2.1. Let a and Ç be two elements of S. Then the following
are equivalent:

(i) det(l, —£W0;
(ii) £ — a injective;

(iii) det(lp - £<t*) + 0.

If one of these equivalent conditions is satisfied, then a and Ç are said

to be transverse.

Proof Assume (i). As lq Ç*Ç, this condition amounts to det(£*(£—cr))

0, which in particular shows that Ç-a is injective. Conversely, assume Ç — a
is injective and let v G Cq be such that v Ç*av. Now

INI IlfHI < IIHI < IM! >

and hence Jj£*cr?;[J ||cr^||, which is possible only if av G Im£. So there

exists we Cq, such that av £w. But taking the image of both sides by
yields v w, and hence av £v, so that v 0. So lq — £*cr is injective
and hence (ii) => (i). Under the same assumption (ii), let us prove that £cr*

cannot have 1 as an eigenvalue. Suppose v e Cp is such that £a*v v. As
£ is a partial isometry, this forces ||cr*v|| \\v\\, and hence v belongs to the

image of the map a, so there exists we Cq such that v aw. But then we
also have v Ça* aw Çw and hence (a — Ç)w 0 which forces w — 0.
Hence (iii) follows from (ii). Finally assume (iii). Then as a is injective,
(1p — Ça*) o a — a — Ç is also injective. Hence (iii) => (ii).

We will use the notation <tT£ to denote transversality. It is a symmetric
condition. It is invariant under the action of G, as can easily be concluded
from (6). For a e S, let

Sr {£kT£}.
Observe that the set S'-fis exactly the subset in S where the Cayley transform
is defined.
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Let

(14) S\ {(a,QçSxS\vT£}.
As base point in Sj- we choose (ie, —ie). Observe that c(—ie) — 0.

THEOREM 2.2. The group G acts transitively on S\.

Proof. Let (a, 0 G S\ and let us show that there exists an element of
G which maps (<j,£) to (ie, —ie). As G is transitive on S, we may assume
that a ie. Then the transversality condition shows that £ belongs to the

domain of the Cayley transform. The element c(£) belongs to CS, and we
have already noticed that CB is transitive on CS. Hence c(0 can be mapped
to 0 c(—ie). Taking the image under the inverse Cayley transform gives
the result. Q

Denote by L the stabilizer of the base point (ie, —ie) in B. Under a Cayley
transform, the group CL — coLoc~l is the stabilizer in CB of the element 0.
Hence it is the subgroup of linear transformations given by

Wq I » h*Wqh

wf I—» uwh

where h G GL(g, C), u G U(p — q) and det h (detw)-1.

LEMMA 2.3. Let (u) ^ Then they belong to the same orbit

under the action of CL if and only if wq and vq belong to the same orbit
under the action of GL(q, C).

Proof. One implication being trivial, we only have to prove the other

one. So assume there exists h G GL(g, C) such that vq h*wqh. Let p be

a complex number such that pP~q det h and let u p~\lp~q. Clearly
(det u)~l det h. Using the action of (h, u) we may assume that vq wq.
Let sq jfwq — wq). This is an Hermitian matrix and as wq and vq belong
to CS, we get

/* / /* /
Sq — W W V V

Looking to the columns of w' (or v'), we may think of w' as a family of
q vectors in Cp~q. Then the matrix sq is the Gram matrix of these vectors.

But two sets of vectors in Cp~q are conjugate under the action of the unitary

group U(p — q) if and only if they have the same Gram matrix. Hence there

exists u G U(p — q) such that v' — uwf. Let À be a complex number such

that Xq det u. Then using the action of (\~llq, w), we get the result.
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Let us denote by Hq the real vector space of q x q Hermitian matrices,

and let Qq be the subset of all positive-definite matrices. For any integer r
such that 0 < r < q let Q^r) be the set of all positive semi-definite q x q

Hermitian matrices of rank less than r. For r < q, the set is contained

in the boundary of Qq, whereas for r q, Qq.

Let

Tqr) {x + iy \ x £ Hq,y ££2<r)}

The group GL (q,C)acts on T({p by the action w) i—» hwh*

Finally let

{z ^ I z invertible}

~0)
Clearly the action of GL(g, C) preserves Tq

Let be in CS. Then wq xq + iw'*w', with xq e Hq. Let

r inf(q,p - q).

The rank of the matrix w'*w' is at most r. Hence wq belongs to

Conversely, it is easily seen that any positive semi-definite Hermitian matrix
of rank at most r can be written as w'*w' for some w' G Mat((p — q) xq, C).

Let

(15) s\ {(o-i,CT2,(J3) G S X S X S I <J\ T<J2 <7jT(T3, CT3 T (Jj }

THEOREM 2.4. The G-orbits in are in one-to-one correspondance
~(r)

with the orbits of GL(g, C) in Tq

Proof From Theorem 2.2 we already know that any orbit contains an
element of the form (ie, —ie,a) with a G S. Now use the Cayley transform.
The element w c(cr) is in CS, and the transversality condition is equivalent
to the condition det (wq)/0. in other words, The result now
follows from Lemma 2.3.
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