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A TRIPLE RATIO ON THE UNITARY STIEFEL MANIFOLD

by Jean-Louis Clerc

Abstract. For the unitary Stiefel manifold S realized as the Shilov boundary
of the unit ball D in Mat(p x q, C), we construct characteristic invariants for the

(generic) orbits of the conformai group PSU(p, q) in S x S x S. The construction uses

the automorphy kernel of the bounded symmetric domain.

Introduction

Let D G/K be a bounded symmetric domain in a complex vector space

CN, and let S be its Shilov boundary. The action of G extends to S and

this action is transitive on S. It is generally referred to in the literature as

the conformai action of G on S. One can show that the action is almost

2-transitive in the sense that G has a dense open orbit in S x S. Hence it is

a natural question to look for the G-orbits in S x S x S and for characteristic

invariants of this action. If D happens to be of tube type (in which case

dimRiS dimcD), this question was solved in [C0]. There are a finite
number of open orbits in S x S x S, and the (generalized) Maslov index we
constructed is a characteristic invariant for the G-action. In the case of the

unit ball in C2, the Shilov boundary coincides with the topological boundary,
namely the unit sphere S S3. In [Ca], E. Cartan constructed a (real-valued)
invariant for triples on S (he called S the "hypersphere"). Independently (and

more than 50 years later) Korânyi and Reimann studied the case of the unit
ball in Cn (see [KR]). Through the Cayley transform, the problem is changed
into an equivalent problem for the Heisenberg group Hn under the action of
its conformai group G PSU(n + 1,1). For this situation, they studied a

complex cross ratio on H„, from which they were able (in a rather indirect
way) to construct a (real-valued) invariant for triples, which characterizes the
G-orbits of triples in H„. Here we solve the problem for the case where D
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is the unit ball in the matrix space Mat(p x q, C), S is the unitary Stiefel
manifold Sp^q and G PSU(p,q). The invariant we construct for triples is

of matrix-valued nature (it is a conjugacy class) and we give two versions of
it (see Theorems 4.3 and 4.4). The basic strategy is to approach the Shilov

boundary from inside. The (matrix-valued) automorphy kernel for the domain
D is used to build a kernel for triples of points inside D which transforms

nicely under the action of G. It remains to look carefully at the boundary
behaviour of the kernel when the points approach the Shilov boundary S. This
is only possible for triples satisfying a generic condition called tranversality
(see Proposition 2.1 for a definition). The Cayley transform plays an important
role in the proofs. Finally the problem is reduced to a linear problem, which
is related to the description of some orbits for the action (g,X) gXg* of
GL^ on Mat(g x q, C) (see Theorem 3.9).

For general references on bounded symmetric domains and their geometric
properties, see [S], and Part III in [Fal]. For explicit calculations related to

our example, see [P] and [H].

Let G SU(p, q) C GL(p + q, C). An element g G GL(p + q, C) will often
be written as

a G Mat(p x p, C), b G Mat (p x q, C), c G Mat(g x p, C), d G Mat(g x q, C).

In this notation, the conditions for g to belong to U(p, g, C) can be written
as

1. Geometric setting

(1)

Let p,q be two integers with 1 < q < p, and let

D {z G Mat(p xq,C)\lg- > 0}

where

(2)

— c*c =s 1p

b*a - d*c 0

d*d - - lq

(3)

Define an action of the group GL (p + q, C) on Mat(p x q, C) by

g{z) (az + b)(cz + d)~l.
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