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A TRIPLE RATIO ON THE UNITARY STIEFEL MANIFOLD

by Jean-Louis CLERC

ABSTRACT. For the unitary Stiefel manifold S realized as the Shilov boundary
of the unit ball D in Mat(p x g,C), we construct characteristic invariants for the
(generic) orbits of the conformal group PSU(p,q) in § X § x §. The construction uses
the automorphy kernel of the bounded symmetric domain.

INTRODUCTION

Let D = G/K be a bounded symmetric domain in a complex vector space
CV, and let S be its Shilov boundary. The action of G extends to S and
this action is transitive on S. It is generally referred to in the literature as
the conformal action of G on S. One can show that the action is almost
2 -transitive in the sense that G has a dense open orbit in § X S. Hence it is
a natural question to look for the G-orbits in S X S x § and for characteristic
invariants of this action. If D happens to be of tube type (in which case
dimg S = dimc D), this question was solved in [C@]. There are a finite
number of open orbits in § X § X S, and the (generalized) Maslov index we
constructed is a characteristic invariant for the G-action. In the case of the
unit ball in C?, the Shilov boundary coincides with the topological boundary,
namely the unit sphere S = S3. In [Ca], E. Cartan constructed a (real-valued)
invariant for triples on S (he called S the “hypersphere”). Independently (and
more than 50 years later) Kordnyi and Reimann studied the case of the unit
ball in C" (see [KR]). Through the Cayley transform, the problem is changed
into an equivalent problem for the Heisenberg group H, under the action of
its conformal group G = PSU(n + 1,1). For this situation, they studied a
complex cross ratio on H,, from which they were able (in a rather indirect
way) to construct a (real-valued) invariant for triples, which characterizes the
G-orbits of triples in H,,. Here we solve the problem for the case where D
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is the unit.ball in the matrix space Mat(p x ¢, C), S is the unitary Stiefel
manifold S,, and G = PSU(p,q). The invariant we construct for triples is
of matrix-valued nature (it is a conjugacy class) and we give two versions of
it (see Theorems 4.3 and 4.4). The basic strategy is to approach the Shilov
boundary from inside. The (matrix-valued) automorphy kernel for the domain
D 1s used to build a kernel for triples of points inside D which transforms
nicely under the action of G. It remains to look carefully at the boundary
behaviour of the kernel when the points approach the Shilov boundary S. This
1s only possible for triples satisfying a generic condition called tranversality
(see Proposition 2.1 for a definition). The Cayley transform plays an important
role in the proofs. Finally the problem is reduced to a linear problem, which
is related to the description of some orbits for the action (g,X) — gXg* of
GL, on Mat(g x g,C) (see Theorem 3.9).

For general references on bounded symmetric domains and their geometric
properties, see [S], and Part III in [Fal]. For explicit calculations related to
our example, see [P] and [H].

1. GEOMETRIC SETTING

Let p,q be two integers with 1 < g < p, and let
(1) D= {zeMatlp x ¢q,C) |1, — 72> 0} .

Let G = SU(p,q) C GL(p + ¢,C). An element g € GL(p + ¢, C) will often
be written as |

1= (2 a):

a € Mat(p x p,C), b € Mat(p x q,C), ¢ € Mat(g x p,C), d € Mai(g x g,C).

where

In this notation, the conditions for g to belong to U(p, g, C) can be written
as

a‘a—c'c=1,
(2) b*a—d*c=0
d'd—-b'b=1,.
Define an action of the group GL(p + g, C) on Mat(p x gq,C) by
3) - 9(z) = (az+ b)(cz+d) .
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The action is not everywhere defined, but it is certainly defined if ¢ € G and
z € D. It defines an action of G on D, and G (or rather PSU(p, g)) is the
neutral component of the group of all biholomorphic transformations of D.

The stabilizer of the base point 0 € D is the maximal compact subgroup
K = S(U() x U(g)). Its complexification is the complex group K€ =
S(GL(p, C) x GL(q,C)). We also define the following subgroups

P+:{(1p f),zeMat(pxg,C)}
q

P“z{(lp O),wEMat(qXp,C)}.
w 1,

The corresponding Harish Chandra decomposition is the following identity

_(a b\ (1, bd'\[a—bd"'c O\/ 1, O
X g—(c d)_<0 1q)< 0 d)(d—lc 1,

valid for g € GL(p + ¢, C) if d is invertible.
The automorphy kernel k(z,w) is defined for z, w € Mat(p x g, C) wherever
it makes sense by the formula

(5) k(z,w) = (1, —w*z)~'.

In particular it is always well defined for z,w € D and has values in GL(g, C).
It has the following law of transformation for g € G

(6) k(9(2), g(w)) = j(g,2) k(z, w) j(g, w)*,
where
(7) (g, 20) =cz+d.
The Shilov boundary of D is the unitary Stiefel manifold S defined by
(8) S:{JEMat(pxq,C)la*azlq}.

The action of G extends to S, and it is clearly transitive on S. In fact the
action of K is already transitive.

To go further, we need to make a specific choice of a base point in §.
For this we first systematically write elements in Mat(p x q,C) as

Z
= (3)
where z, € Mat(g x ¢, C) and 7’ € Mat ((p —q) Xq, C) . With this convention,

. i1, o : . ..
let ie = ( 0 ) be the base point in S. Associated to this choice is the Cayley

transform c, given by
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= (3) 0= ()
4 w

9) w, = (z4 +il,)(iz, + 1,) 7!
w' = —7(iz, +1,)7".

with

) ) ) w )
The inverse of the Cayley transform is the map which to ( ’f) associates
w
the matrix (2‘,’) given by

(10) 2y = (iw, — 1)1 (i1, — w,)
7 =2w'(iw, — 1,)7".

The Cayley transform is a rational map, well defined on D. The image of
D is the Siegel domain of type II defined by

1
(11) CD:{(Z‘f), Z(wq—w;)—w'*w’>>0}

and the image of the Shilov boundary (more exactly the part of the Shilov
boundary where the Cayley transform is defined) is

1 * Ik 7
(12) CS:{(?L"U‘,I),E(%—%):@U w}.

To the data

wo € Mat((p — q) x g, C)
h € GL(¢g,C), u € Up — q,C), such that deth = (detu)™"
s € Herm(q, C)

we associate the transform
(13) wy — W wgh + s + 2iwguw'h + iwgwo
w — uw'h +wy .

Any such transform maps D in a one-to-one fashion into itself. These
transforms form a group and it is exactly the group of affine holomorphic
transforms of the domain “D.

Let B be the stabilizer of the point ie in G. The conjugate group under
the Cayley transform is B = coBoc~! and it turns out to be exactly the
group of affine transforms of °D we just described. Observe that the group
°B is transitive on ‘D and on °S.
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2. ACTION OF G ON S xS AND S xS xS

We now study the action of G on pairs of points of S. The main notion to
be introduced is transversality, a notion that could be defined for any bounded
symmetric domain. We give several equivalent definitions for our case.

PROPOSITION 2.1. Let o and & be two elements of S. Then the following
are equivalent:

(i) det(l,—E&%0)#0;
(i) & — o injective;
(iii) det(1, —&o*) # 0.

If one of these equivalent conditions is satisfied, then o and £ are said
to be transverse.

Proof. Assume (i). As 1, = £*¢, this condition amounts to det({*({—0)) #
0, which in particular shows that £ —o is injective. Conversely, assume § — o
is injective and let v € C? be such that v = £*ov. Now

loll = l[§%ovll < llov]l < [l

and hence ||£*ov| = |ov||, which is possible only if ov € Im&. So there
exists w € C?, such that ov = £w. But taking the image of both sides by &*
yields v = w, and hence ov = v, so that v = 0. So 1, — {*o is injective
and hence (i1)) = (1). Under the same assumption (ii), let us prove that {0
cannot have 1 as an eigenvalue. Suppose v € C? is such that £0*v = v. As
¢ is a partial isometry, this forces ||c*v|| = ||v||, and hence v belongs to the
image of the map o, so there exists w € C? such that v = ocw. But then we
also have v = £0*ow = &w and hence (0 — &)w = 0 which forces w = 0.
Hence (ii1) follows from (ii). Finally assume (iii). Then as o is injective,
(1, —&0*) oo = o — £ is also injective. Hence (iil)) = (ii). [

We will use the notation o T to denote transversality. It is a symmetric
condition. It is invariant under the action of G, as can easily be concluded
from (6). For o € §, let

7 ={£]0Te).

Observe that the set S% is exactly the subset in S where the Cayley transform
1s defined.
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Let .
(14) 2 ={(0,6)eSx8|oTE}.

As base point in % we choose (ie, —ie). Observe that c(—ie) = 0.

THEOREM 2.2. The group G acts transitively on S%.

Proof. Let (0,§) € 52T and let us show that there exists an element of
G which maps (0,&) to (ie, —ie). As G is transitive on §, we may assume
that o = ie. Then the transversality condition shows that & belongs to the
domain of the Cayley transform. The element c(£) belongs to ¢S, and we
have already noticed that °B is transitive on °S. Hence c(£) can be mapped
to 0 = c(—ie). Taking the image under the inverse Cayley transform gives
the result. [

Denote by L the stabilizer of the base point (ie, —ie) in B. Under a Cayley
transform, the group °L = coLoc™! is the stabilizer in °B of the element 0.
Hence it 1s the subgroup of linear transformations given by

*
Wy h wqh
w' — uwh

where h € GL(q,C), u € U(p — q) and deth = (detu)~!.

LEMMA 2.3. Let <:Z‘,1), (Z‘f) € ¢S. Then they belong to the same orbit

under the action of °L if and only if w, and v, belong to the same orbit
under the action of GL(q,C).

Proof. One implication being trivial, we only have to prove the other
one. So assume there exists h € GL(g,C) such that v, = h*w,h. Let p be
a complex number such that y?~7 = deth and let u = p~'1, .. Clearly
(detu)~! = deth. Using the action of (h,u) we may assume that v, = w,.
Let s, = %i(wq — wy). This is an Hermitian matrix and as w, and v, belong
to ¢S, we get

Sq s wl*w/ - 'U/*’U, )
Looking to the columns of w’ (or v’'), we may think of w’ as a family of
g vectors in CP~9. Then the matrix s, is the Gram matrix of these vectors.
But two sets of vectors in CP~¢ are conjugate under the action of the unitary
group U(p — gq) if and only if they have the same Gram matrix. Hence there
exists u € U(p — ¢) such that v = uw’. Let A be a complex number such
that \? = detu. Then using the action of (A\~'1,,u), we get the result.  []
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Let us denote by H, the real vector space of g X g Hermitian matrices,
and let Q, be the subset of all positive-definite matrices. For any integer r
such that 0 < r < ¢ let Q) be the set of all positive semi-definite g X g
Hermitian matrices of rank less than r. For r < g, the set Q" is contained
in the boundary of Q,, whereas for r = g, Qf = Q,.

Let

T ={x+iy|x€Hyy€ Q}.

The group GL(g,C) acts on T\ by the action (h,w) — hwh™.
Finally let

T;r) = {z € T | z invertible} .

o~

Clearly the action of GL(g,C) preserves T((Ir).

Let <w€> be in °S. Then w, = x, + iw*w', with x, € H,. Let
w

r = inf(g,p — q).

The rank of the matrix w'*w’ is at most r. Hence w, belongs to Tér).

Conversely, it is easily seen that any positive semi-definite Hermitian matrix

of rank at most » can be written as w’*w’ for some w’ € Mat((p —g) x g, C).
Let

(15) 3 ={(01,02,03) €ESXxSx S| 01 Top, 0, To3, 03Ty}

THEOREM 2.4. The G-orbits in S5 are in one-to-one correspondance
with the orbits of GL(g,C) in T, .

Proof. From Theorem 2.2 we already know that any orbit contains an
element of the form (ie, —ie,o) with o € S. Now use the Cayley transform.
The element w = c(o) is in °S, and the transversality condition is equivalent

o~

to the condition det(w,) # 0. In other words, w, € T;r). The result now
follows from Lemma 2.3.  []
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3. ORBITS FOR THE GL,-ACTION ON T,

Any z € Mat(g X ¢, C) can be written in a unique way as z = x+ iy, with
x,y € Hy;. We will be concerned with the set T, defined by

(16) Tq = {z € Mat(g x ¢,C) | z=x+iy, x € Hy, y € Q,, detz # 0}.
Its interior is the classical tube domain over the cone €2,, namely
T,={z€Mat(g x q,C) | z=x+1iy, y € Q,}.
Let G = GL(q,C) act on Mat(g x ¢g,C) by

(17) (9,2) — gzg" .
The spaces Hy, Qq,—ﬁq are stable under this action, and hence fq and T, are
invariant subsets under this action. We investigate the orbits and describe a
full set of invariants for this action.

There is a natural invariant associated to a GL(g, C)-orbit. To any z € fq,

we associate its angular matrix defined by
1

(18) a=aR)=17" z.

Then the matrix associated to gzg™ is g*_lag* , S0 that the angular matrix a(z)
belongs to the same conjugacy class when z runs through a GL(g, C)-orbit.
As we shall see (Theorem 3.3 and Theorem 3.13), this invariant is close to
characterizing the orbits.

Let us first prove some elementary properties of the angular matrix.

R~ -1 .
PROPOSITION 3.1. Let z=x+1iy € Ty, and let a =7* z be its angular
matrix. Then

(i) Spla) CUy ={pneC,|ul=1};
(1) if 1 € Sp(a), then y is degenerate and

freCllav=v}={velCl|yw=0}. .

Proof. Let u be an eigenvalue of a, and let v # 0 be an eigenvector for
the eigenvalue y. Then zv = pz*v, and hence

(zv,v) = p(z"v,v) = v, zv) = p(zv,v).
If (zv,v) # 0, then || = 1. So we now assume (zv,v) = 0. This amounts
to (xv,v) + i(yv,v) = 0, so that in particular (yv,v) = 0. Now recall that y
is positive semi-definite. So the condition (yv,v) = 0 implies that yv = 0.
From this it follows that zv = xv = z*v, and as z is assumed to be invertible,
this implies p = 1. This shows (i) and part of (i1). Conversely, the condition
yv = 0 implies trivially av =v. [




A TRIPLE RATIO ON THE UNITARY STIEFEL MANIFOLD 59

In particular, we may consider the polynomial d(u) = det(z — uz*). The
roots of d are the eigenvalues of the angular matrix. The set of these roots,
counted with their multiplicities, will be called the angular spectrum of z.

We first consider the case of T,. So let z = x+ iy € T,. Then as y is
positive-definite, we may define its square root y!/2 as the unique’ positive-
definite Hermitian matrix whose square is y. Then we may write

R S S
x+ iy =y2(y 2xy” 2 +ilgy> .

This shows that any GL(qg, C)-orbit contains some element of the form x+-il,,

where x € H,. But by the classical diagonalization theorem for Hermitian

forms, there exists an orthonormal basis in which the Hermitian form associated

to x is diagonal. In other words, there exists a unitary matrix # and real
numbers A; > A, > --- > A, such that

Al
A2
uxu® = A =
Aq

Moreover, if A and A’ are two such diagonal matrices, then A + i1, and
A’+1i1, are not conjugate under the action of GL(g, C) unless A = A’. Hence
we have shown the following result, which of course is the well-known fact
that there is a simultaneous diagonalization for two Hermitian forms if one
of them is positive-definite.

THEOREM 3.2. The set of matrices of the form

A+

A+
(19) A=

A +i

with Ay 2 Xy--+ > N, is a full set of representatives of the GL(g, C)-orbits
in T,.

The angular matrix associated to A is

(20)
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The latter is a semi-simple matrix with spectral values

._)\j+i

for 1 <j < g. Observe that these spectral values are complex numbers of
modulus 1, but always different from 1. From the u; we may recover the );
by the formula

From these observations we get the following result.

THEOREM 3.3. Two elements z and 7' of T, belong to the same
GL(q, C)-orbit if and only if their angular matrices are conjugate. The angular
spectrum is a full set of invariants for the action of GL(q,C) on T,.

The situation for fq is more complicated. In fact we may consider the
extreme case where y = 0. Then x corresponds to a non-degenerate Hermitian
form, and the orbit picture is given by the signature. So we need to consider
matrices of the form

(! )

Y=Y, , =

\ )

with n, diagonal entries equal to +1 and n_ diagonal entries equal to —1,
ny and n_ being arbitrary nonnegative integers such that ny +n_ = q. The
corresponding angular matrix is the identity matrix 1,.

Another source of difficulty comes from the fact that it is not always
possible to find a basis in which both Hermitian forms associated to x and y
are diagonal. For instance if ¢ = 2, consider the matrix

(i 5‘)_(0 5') .(1 0)
<l = i — i 41 .
(—5 0 -3 0 0 0

Notice that its angular matrix is

(10
“\1 1)

which is not semisimple.
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From these examples we see that neither the angular spectrum of z nor
the conjugacy class of the angular matrix characterizes the orbit of z.
Let ny, ny, n3, ng be four nonnegative integers such that +2ny+n3+ng = q,

and let A\, \2,..:,\,, be ny real numbers satisfying the condition
A2 X 2> 2 Ay
To such data we associate the matrix A = A\, A2, ..., Ay, N2, N3, 14)
given by
/)u +1 \
Any + 1
i 1
1 O
i1

21) L0

\ o

1
where there are n, diagonal 2 x 2 submatrices of the form (; 0),

ny diagonal terms equal to 1 and n4 diagonal terms equal to —1.

THEOREM 3.4. Any GL(q,C) orbit in Tq contains one and only one
matrix of the form A\, Ap, ..., Ay, N2, N3, 04).

Before beginning the proof, let us prove a couple of lemmas. Lemmas
3.6 and 3.7 are related to the classical Gauss’s algorithm for diagonalizing an
Hermitian form. Let r,s,n be three nonnegative integers such that r+s = n.

LEMMA 3.5. The stabilizer in GL(n,C) of the matrix y, = (1, 0 ) IS
the subgroup i

o {(s 1)

where u € U(r), v € Mat(r,s), h € GL(s, C).

Proof. Easy computation.
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Now we study the action of G, in H,. If x € H,, let us write

x__ozb
=y

where o € H,,b € Mat(r x 5,C) and v € H,. If g = (

o b
gxg* = <b’* 7,) , with

Uu v
. h) € G,, then

o = uou™ + ubv* + vb*u* + vyv*
b’ = ubh* + vyh*

v = hyh*.

LEMMA 3.6. Let x = (l?" §> € H,, with o« € H,, b € Mat(r x s,C)
and v € H; . Assume dety # 0. Then the orbit of x under G, contains a

"0
matrix of the form (a ’y) with o € H,.

0

Proof. This is a consequence of the previous formula with u = 1,,
v=—by~! and h = 1.

a b
LEMMA 3.7. Let x = (b* 0

r > s ). Then the orbit of x under G, contains an element of the form

) € H,, with rankb = s (so in particular

3 0 0
0 0 1,
0 1, 0

with 0 € H,_;.

Proof Consider the subgroup {(g 2) we Ui, h e GLS(C)}. It

acts on the component b by b’ = ubh*. As rank(b) = s, we may think of b
as a set of s independent vectors in C". By the Gram-Schmidt process, it is
possible to find & € GL;(C) such that bh* is a s-orthonormal frame in C’.
But now two such frames are conjugate by the (left) action of U(r). Hence
there exists u € U(r) such that
. 0
ubh™ = (15> :
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The matrix x we started with is conjugate under G, to a matrix of the
form

a ¢ 0
ct B 1
0 1, O

where o/ € H,_,, B € H,; and ¢ € Mat((r —s) x s, C). Now we use the action
of the element

1,., 0 —c
g= 0 1, -2 ]eqG
0 0 1

to get the result. [
We are now ready to start the proof of Theorem 3.4.

STEP 1. Let z=x+1iy € Tq. As y is positive semidefinite, there exists
an element g € GL(g,C) such that

o \

g =

\ ) 0/

with r diagonal entries equal to 1, and s diagonal entries equal to O,
r and s being nonnegative integers satisfying r 4+ s = ¢. In other terms, any
GL(q, C)-orbit in T, contains an element of the form

a+il, b
b* v

with o € H,,v € H;,b € Mat(r x s,C).
STEP 2. Now assume x is of the form

‘o a+il, b
— b . )

Consider . It is an Hermitian matrix of size s, and under the action of
GL(s, C) it can be transformed to

0, 0 0
0 1, O
0 0 -1,




64 . ' J.-L. CLERC

where n; 4 n3 +n4 = 5. Hence x is conjugate under the action of G, to an
element of the form

a b
b* 0 0
c* 0 Y

where o € H,, b’ € Mat(r X ny,C), ¢’ € Mat(r x (n3 + nyg),C) and

1, O
Y_(O —_ln4).

Using Lemma 3.6, we see that x is conjugate under the action of Gy to an
element of the form

Oé// b/l O
b/l* 0 0 ’
0 0O 7Y

with o € H,, b"” € Mat(r x ny, C).

STEP 3. Assume now that

a b 0
x=1|b* 0 0
O 07

with o € H, and b € Mat(r X n,, C). Recall that

a+il, b 0
x+iy=1| " b* 0 O
0 0 Y

is assumed to be invertible. This shows that rank(b) = n,. So we may apply
Lemma 3.7 to see that x is conjugate under G, to an element of the form

B3 0 0 0
0 0 1, O
01, 0 0
0 0 0 Y

with B8 € H,_,, .

STEP 4. Set n; = r —n,. The last step is just to put the element 8 € H,,
in diagonal form under the action of U(n;). Up to minor rearrangements of
the matrix, this shows that any GL(g, C)-orbit in Tq contains an element of
the form AQ\, ... s Anyy M2, 13, 14) .
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STEP 5. It remains to show that two A’s are not conjugate under GL(g, C).

The angular matrix associated to A(Aq, ..., Ay, M2,73,14) 18
A +i
Any +i
Aoy —i
1 0
2i 1
1 O
2i 1
1
\ 1)

: 1 0 :
where there are n, 2 x 2 submatrices (21, 1), and n3 + ng diagonal
elements equal to 1. From the Jordan normal form theorem, we deduce
that if A(A1,..., \n,72,m3,n4) and A(A}, ..., A, ,n5,n5,n;) are in a same
GL(g, C)-orbit, then n; = nj, A\ = )\]’- for all j,1 <j < ny, np =n; and
ny +ng = n + nj. Now the matrix A(A,..., Ay ,n2,n3,n4) = L+ iM and

AN =L +iM, with L,L',M,M' € H,. As A and A’ are supposed to be in
the same GL(g, C)-orbit, L and L’ are also in the same GL(g, C)-orbit, and

so they must have the same signature. This forces n3 = n} and ngs = ny, and
hence A = A’.

We can now give the solution to the orbit problem we addressed at the end
of Section 2. Recall that for any integer » such that 0 < r < g we defined

T;r) ={z=x+iy|y€Q, rank(y) <r, z invertible}.

LEMMA 3.8. Let ni,ny,n3,ng be four integers such that
n +2ny +n3+ng =g,

and let Ai,..., N\, be ny real numbers. Then the standard matrix A =

A1, ...y Ay, 02,03, n4) belongs to T;r) if and only if ny +ny <r.

In fact the rank of —zl—i(A — A*) is ny +ny.
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THEOREM 3.9. Any GL(g, C)-orbit in T;r) contains a unique standard
matrix A((A\y, ..., Ay, n0,n3,n4) With ny +ny <r.

We now want an analog of Theorem 3.3. As we have already noticed,
the conjugacy class of the angular matrix does not determine the orbit of the
matrix. We need a finer invariant, which we will construct now.

LEMMA 3.10. The space JN“q is connected and simply connected.

Proof. As T, is connected and T, C T c T,, the space T 1S connected.
Take i1, as base point in Tq , and observe that for any L€ T and any s > 0,
z+ lSlq is in T,. So if (y(#),#€[0,1]) is a path in T, starting and ending
at i1, then we can deform it by homotopy to () = v(f) + is(s — 1)1,,
which for s > 0 is a path inside 7,. But T, as a tube-type domain is simply
connected. [

The function z — det(z) is a continuous function from fq into C*.
From Lemma 3.10, there exists a unique continuous determination of the
argument of det(z) denoted by argdet: Tq — R such that argdetil, = g7 .
If Y € Q, then argdetiy = g5. If z € T, and g € GL(g,C), then
det gzg* = |detg|2 detz, and gil,g* = igg* € i€, so that

argdet gzg* = argdetz.

This provides a new invariant for the action of GL(g,C) on Tq.

LEMMA 3.11. Let A=A\, ..., Ay, n2,n3,n4). Then
(23) argdet A = arg(A\; + 1) + - -+ arg(\,, + 1) +npm + nATe

where arg is used for the principal determination of the argument of a non-zero
complex number.

Proof. We need to describe a continuous path from i1, to A inside T g
For clarity of exposition, we describe successively the path for each diagonal
block (either a one-dimensional or a two-dimensional submatrix) of A, and
compute the contribution of each block to the function argdet.

For a block of the form A + i, with A € R we use the path 1 — tA + i,
0 <r <1, and so the contribution of this block is arg(\ + 7).
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For a block of the form (i é), we use the path

it
0<r<1.
tH(t i(1—z2)>’ ==

The corresponding determinant of this 2 x 2-block is constant along the path
and equal to —1. Hence the contribution of this block is 27 = .

For a block of the form 1, we use the path ¢+ €209 0 <t <1, and
we see that the corresponding contribution is 0.

For a block of the form —1, we use the path ¢+ ¢ 2UF) 0 <1 <1,
and we see that the corresponding contribution is 7.

Putting together the contribution of the blocks, we get the result. []

COROLLARY 3.12. Let A and A’ be two standard matrices. Assume that
their angular matrices coincide and that argdet A = argdetA’. Then A = A’.

Proof. In fact we noticed that the equality of angular matrices implies
the equality of the parameters except for ny = n} and n4 = nj. But from
(23), we see that the equality of the determination of the arguments of the
determinants implies ns = n) (and hence n3 =nj}). [

Now we can state the conclusion of this section, which is a consequence
of Theorem 3.4 and Corollary 3.12.

THEOREM 3.13. Let z,7/ € Tq, and assume that the angular matrices of
z and 7' are conjugate, and that argdetz = argdetz’. Then z and 7' belong
fo the same orbit under the action of GL(gq,C).

REMARK. lLet z € Tq. Let a = z*—lz. Then

deta = 2 _ |detz| *(detz)> .
detz
So 2 argdetz is a determination of arg(deta). If z and 7z’ are two matrices
in Tq with the same angular matrix, then argdetz and argdetz’ differ by an
integral multiple of 7. So the new invariant needed to characterize the orbits
under GL(g,C) has to be regarded as a Z-valued function. In this sense, it

is a generalization of the signature.
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4. THE TRIPLE RATIO ON S

We return to the notation introduced in Sections 1 and 2.

For z1,z2,73 € Mat(p x g, C) define, whenever it makes sense, the element
T(z1,22,23) € GL(g,C) by the following formula

(24) T(z1,22,23) = k(z1,22) k(z3,22) " (23, 21)
=1, —521) 7'y — z3)(Ag — 2fz3) 7"

It satisfies the following transformation law

(25) T(g(z1), 9(z2), 9(z3)) = j(9,21) T(z1, 22,23) j(g, 21)"

for g € G. In particular, we see that T(o, 0,03) is well defined on S3T and
that the GL(g, C)-orbit of T(cy, 02, 03) is constant along any G-orbit in S3-.

LEMMA 4.1. Let 0 = (ZIZ) € S, tranverse to ie and —ie. Then
o 1. -1
(26) T(ie,—ie,0) = 5—,(116] +o )y +ioy) .
i

Proof. 'This is an easy computation.

PROPOSITION 4.2. Let (01,02,03) € 8%. Then

. r=lr)
2i T(o1,0,,03) € Tqr .

Proof. Let us first assume o) = ie,0p = —ie,03 = o. Except for the

factor 2%., a comparison with (9) shows that T'(ie, —ie, o) is the “first term of

the Cayley transform of o. More precisely, let c(o) = £ = (?’1) Then we

may rewrite (26) as
1
T(ie, —i = =£,.

Now & belongs to S, and hence %(fq — &) = &€ But rank(¢') <, so

rank(£'*¢") < r and hence £, belongs to T;r). Now the transformation law
(25) for the triple ratio implies that for any (o1, 02,03) € $3-, 2iT(0y, 02, 03)

belongs to T;r) N
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THEOREM 4.3. Let (01, 07,03) and (11, T2, 73) belong to S3T. They belong
to the same G-orbit if and only if T(o1,02,03) and T(ry,T2,T3) belong to
the same GL(q, C)-orbit.

Proof. One way is obvious from the transformation law (25) for the
triple ratio. For the converse, we assume (as we may) that o3 = 71 = ie
and 0y = m = —ie, and set for simplicity o = o3 and 7 = 73. Then the
assumption implies that (i1, 4+ o,)(1, —io,) ™" and (ily + 7)1, —ity)~" are
in the same GL(g, C)-orbit. By Lemma 2.3, c¢(0) and ¢(7) are in the same
°L-orbit. So o and 7 are in the same L-orbit.  []

Now to give a description of the invariant in terms of Theorem 3.13, we
need to define the analog of the function argdet. For z; € D and 2 € D, the
function k(zy,22) = (1, — zgzl)_l is well defined and belongs to GL(q, C).
So we can extend the definition of T to the set

Dt ={(z1,22,23) |z €DUS, 1 <i<3, 21Tz, 22T'z3, 23T 21},

where by definition zT'w is satisfied if z or w belongs to D, and reduces
to the condition zTw if both z and w belong to S. As D+ is stable by
(z1,22,23) — (tz1,122,1z3) for 0 <t < 1, this is a simply connected set. For
71 € D, detT(z1,21,21) is a positive real number. So there is a well defined
continuous determination of the argument of det(7(z;,z2,23)) on 5T such that
it takes the value 0 whenever z; = zp = z3 € D. Denote this determination by
argdet T(z1, z2,z3). It is clearly invariant under the G-action, and so it defines
an invariant for the G-orbits.
On the other hand, let

—1
S(z1,22,23) = T(z1,22,23)" T(21,22,23)
be the angular matrix associated to 7(z1,22,23).
THEOREM 4.4. Let (01,02,03) and (11,7, T3) belong to S3T. They belong

to the same G-orbit if and only if S(o1,09,03) and S(11,7,,7T3) are conjugate
under GL(q,C) and argdetT(oy,0,,03) = argdet T(11, 72, 73).

Proof. This is a direct consequence of Theorem 4.3 and Theorem 3.13.
REMARK 1. Let us consider the case where g = 1. The Stiefel manifold

is the unit sphere S*~! in CP. The transversality condition ¢ T just means
o # T, as is easily seen from the Cauchy-Schwarz inequality. The triple ratio
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1s the complex number
T(01,02,03) = (1 — 0301) 7' (1 = 0303)(1 — 07 o3) ™.

The group GL(gq,C) ~ C* acts on the upper halfplane by (), z) — |)\I2z and
so the orbits are described by the argument of the complex number z. So the
characteristic invariant in this case is just

arg (1 — 0301) (1 — 0503)(1 — 0fo3) 7).

It is equivalent to the invariant 6 considered in [KR]. This invariant, almost
in our terms, was known to E. Cartan (see [Ca]).

REMARK 2. Let us consider the case where p = ¢g. Then the Stiefel mani-
fold is U(g), and the content of Proposition 4.2 is that for (o1, 07,03) € S3T

T(01,02,03) = (1 — o501) (1 — 0503)(1 — ofo3) ™"

1s an invertible skew-Hermitian matrix. The orbits of GL(g,C) in its action
on nondegenerate Hermitian forms are characterized by the signature. So the
characteristic invariant as described in Theorem 4.3 in this case reduces to
sgnil(oy,09,03). As concerns Theorem 4.4, notice that the invariant § 1is
trivial (equal to —1,), so one is only concerned with the invariant argdet T .
The bounded domain D is of tube type and the description of the invariant
through the function argdet coincides with the approach of this problem
in [CQ], where the invariant was introduced under the name of generalized
Maslov index.

REFERENCES

[Ca] CARTAN, E. Sur le groupe de la géométrie hypersphérique. Comment. Math.
Helv. 4 (1932), 158-171.

[CA]  CLERC, J.-L. and B. ORSTED. The Maslov index revisited. Transform. Groups
6 (2001), 303-320. ‘

[FK] FARAUT, J. and A. KORANYIL. Analysis on Symmetric Cones. Oxford Mathe-
matical Monographs, Clarendon Press, Oxford, 1994.

[Fal] FARAUT, J. et al. Analysis and Geometry on Complex Homogeneous Domains.
Progress in Mathematics /85. Birkhauser Verlag, Boston, 2000.

[H] Hua, L.-K. Geometries of matrices, I. Generalizations of von Staudt’s theorem.
Trans. Amer. Math. Soc. 57 (1945), 441-481.

[KR] KORANYI, A. and H. M. REIMANN. The complex cross ratio on the Heisenberg
group. L’Enseign. Math. (2) 33 (1987), 291-300.




A TRIPLE RATIO ON THE UNITARY STIEFEL MANIFOLD 71

[P] PIATETSKII-SHAPIRO, L.I. Geometry of Classical Domains and Theory of
Automorphic Forms. Gordon and Breach, New York, 1969.
[S] SATAKE, 1. Algebraic Structures of Symmetric Domains. Kand Memorial

Lectures (4). Iwanami Shoten and Princeton University Press, 1980.

(Recu le 29 mars 2001)

Jean-Louis Clerc

Institut Elie Cartan

Université Henri Poincaré
B.P. 239

| F-54506 Vandoeﬁvre-lés-Nancy Cedex
| France
e-mail : clerc@iecn.u-nancy.fr




]




	TRIPLE RATIO ON THE UNITARY STIEFEL MANIFOLD
	...
	Introduction
	1. Geometric setting
	2. Action of G on $S \times S$ and $S \times S \times S$
	3. Orbits for the $GL_q$-action on $\tilde{T}_q$
	4. The triple ratio on S
	...


