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We can now obtain Corollary 1.4 stated in the Introduction.

Corollary 5.4. Let G (xu...,xk \ n,..., rm) be a nonelementary

word-hyperbolic group and let H < G be a quasiconvex subgroup of infinite

index. Let an be the number of freely reduced words in A {xi, ,xk}±l
of length n that represent elements of H. Let bn be the number of all words

in A of length n that represent elements of H. Then

lim sup ifaf < 2k — 1

ft—>- oo

and

lim sup \fbn < 2k.
ft—>• oo

Proof Note that k > 2 since G is nonelementary. Put A {xi,... ,xk}
and F T(G,H,A). We choose x0 := HI G VT as the base-vertex of Y. Note

that y is 2&-regular by construction. Also, for any vertex x of Y and any
word w in AUA-1 there is a unique path in Y with label w and origin x.
The definition of Schreier coset graphs also implies that a word w represents

an element of H if and only if the unique path in Y with origin xo and label

w terminates at xo. Therefore an(Y) equals the number of freely reduced

words in the alphabet A {xi,... ,x^}±1 of length n that represent elements

of H. Similarly, bn(Y) equals the number of all words in A of length n

representing elements of H. By Theorem 1.2, Y is nonamenable. Hence by
Theorem 2.5, a(Y) < 2k — 1 and ß(Y) <2k, as required.
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