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368 I. KAPOVICH

4. Suppose H < G is generated by a finite set Q inducing the word-metric
dç> on H. Then H is quasiconvex in G if and only if there is a C > 0

such that for any h\, h2 G H

dQ(hi, h2) < CdA{hi, h2)

(see [20, 32, 4, 31]).

5. The set C of all A-geodesic words is a regular language that provides a

bi-automatic structure for G. Moreover, a subgroup H < G is quasiconvex

if and only if H is C-rational, that is the set Ch — {w G C f W E H} is

a regular language [31].

6. IfHuH2 < G are quasiconvex, then H\ fl H2 < G is quasiconvex [68],

7. [51, 46] Let C < B < G where B is quasiconvex in G (and hence B
is hyperbolic) and C is quasiconvex in B. Then C is quasiconvex in
G [51, 46].

8. Let C < B < G where C is quasiconvex in G and where B is word-

hyperbolic. Then C is quasiconvex in B [51, 46].

9. Suppose H < G is an infinite quasiconvex subgroup. Then H has finite
index in its commensurator Commc(H) (see [51]), where Commc(H) :=
{g G G I [H : g~l Hg DH] < oo and [g~lHg : g~lHg H H] < oo}.

Part 1 of the above proposition implies that a nonelementary subgroup of
a hyperbolic group is nonamenable.

5. Proof of the main result

Let G be a nonelementary word-hyperbolic group with a finite generating
set A. Let X T(G,A) be the Cayley graph of G with the word metric dA.

Let 5 > 1 be an integer such that the space (T(G,A),dA) is ö-hyperbolic. Let

H < G be a quasiconvex subgroup of infinite index in G. These conventions,
unless specified otherwise, will be fixed for the remainder of the paper.

We shall need the following useful fact:

LEMMA 5.1. There exists an integer constant K K(G,H,A) > 0 with
the following properties.

Assume g G G is shortest with respect to dA in the coset class Hg. Then

for any h G H we have (g,h)\ < K (and hence (g,H)\ < K).
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Proof The conclusion of Lemma 5.1 follows directly from the proofs
of Lemma 4.1 and Lemma 4.5 of [4]. We will present the argument for
completeness. For the hyperbolic space X T(G,A) choose 8' > 0 as in

part 2 of Proposition 3.3. Let e > 0 be such that H is an e-quasiconvex
subset of X.

Let g E G be a shortest element of Hg, so that for any h E H we have

Ihg\A < \g\A. We claim that (h,g)i < e + 5' for any h E H.
Suppose not, that is (h,g)\ > e + 8' for some h G H. Consider two

geodesic segments [1 ,g] and [1 ,h] in X and let t G [1,/z], s G [l, g] be

such that dA(\,s) dA{\,t) (h,g)\. Thus dA(s,t) < 8' by the choice of 8'.
Since H is e-quasiconvex in X, there is h' G H such that dA(t,h!) < e. Then

\(h'rlg\A — dA{h\g) < dA(h',t) + dA(t, s) + dA(s,g)

< e + 8 + \g\A - (h,g)i < \g\A

which contradicts the assumption that g is shortest in Hg.

Lemma 5.2. LetT\,T2 > 0 be some positive numbers. Let g G be
such that g,H)i< Tx and \g\A > Tx+ be such that
I f\A<T2. Then (gf,H)x< Tx+ 5.

Proof. Note that \g\A (g,gf)x+ (1 Since (1 <
I/Ia < T2, we conclude that

(öSö/)i \g\A ~ (l?9f)g > T\ + T2 + (5 — T2 T1 + 5.

Therefore for any h E H we have

?i + £ > (ff, % + <5 > min{(g, g/)!, (g/, Ä)t}

and hence (g/,/i)i < Tj + Sbecause (3,5/), > 7) + 5. Since h 6 was
arbitrary, this means that (#/,//)! < 7i + 8.

Lemma 5.3. Suppose gug2GG are such that Hgx Hg2. Then there
is h Ç H such that hgx — g2 and that

\Ma—

Proof. Since Hg, Hg2, there is he H with hgx g2. Hence

\h\A(h,g2)i+(l,hgi)h (h,g2)x+(h-\gi)x < i +(g1,tf)1.
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Proof of Theorem 1.2. Let K K(G,H,A) > 0 be the constant provided
by Lemma 5.1. Put Y T(G,H,A). Thus Y is a connected 2m-regular infinite
graph, where m is the number of elements in A. Denote the simplicial metric
on Y by dY.

Let N be the number of all elements g G G with \g\A < 2K + 28. In
particular Y has at most N vertices within distance 2K + 28 of the coset

HI G VY.

Since G is nonelementary word-hyperbolic and thus nonamenable, the

Cayley graph X T(G, A) is nonamenable. By part 4 of Proposition 2.3 there
is a constant k' > 0 such that for any finite nonempty subset S of G the

-neighborhood of S in X has at least 4N\S\ vertices. Let Afi be the number
of elements of G of length at most K+8+k'. Choose k" > 1 such that for any
vertex Hg G VY with dY{Hl,Hg) < K + 8 + k' the k" -neighborhood of Hg
has at least 4N\ vertices. Such k" exists since by assumption [G : H] oo
and hence the graph Y is infinite. Set k\— max{k' ,k"}.

Suppose now that F c VY is a finite nonempy subset. Write F Fi LI Fi
where F\ is the intersection of F with the closed ball of radius K + 8 •+ k'
in Y.

If IFi I > |Fj/2, then |F| < 2N\ and the k-neighborhood of F in F
has at least 4A^i > 2|F| vertices. Suppose now that |Fi| < |F|/2, so that

\F2\ > |F|/2. Then

F2 {Hgu...,Hgt}

where \F2\ t and where each gt G G is shortest in Hgt with \gt\A >
K + S + kf. By Lemma 5.1 (gi,H)i < K. By Lemma 5.2 for any / G G with

\f\A < k! and for each I 1,..., t we have {gf,H)\ <K + 8.

Let S {#i,..., gt} and let Sf be the set of all vertices of X
contained in the -neighborhood of S in X. By the choice of k! we have

|y I > 4N\S\ — 4N\F21. On the other hand, Lemma 5.3 implies that if g, g' G S'

are such that Hg Hg' then hg — g' for some h e H with \h\A < 2K + 28.

By the choice of N this means that the set F' := {Hg | g G S'} contains at

least

\S'\/N 4N\F2\/N 4|F2| > 2|F|

distinct elements. However, F' is obviously contained in the ^-neighborhood
of F in Y.

We have verified that for any finite nonempy subset F Ç VY the

£-neighborhood of F in F contains at least 2|F| vertices. By the Doubling
Condition (part 3 of Proposition 2.3) this implies that F is nonamenable.
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We can now obtain Corollary 1.4 stated in the Introduction.

Corollary 5.4. Let G (xu...,xk \ n,..., rm) be a nonelementary

word-hyperbolic group and let H < G be a quasiconvex subgroup of infinite

index. Let an be the number of freely reduced words in A {xi, ,xk}±l
of length n that represent elements of H. Let bn be the number of all words

in A of length n that represent elements of H. Then

lim sup ifaf < 2k — 1

ft—>- oo

and

lim sup \fbn < 2k.
ft—>• oo

Proof Note that k > 2 since G is nonelementary. Put A {xi,... ,xk}
and F T(G,H,A). We choose x0 := HI G VT as the base-vertex of Y. Note

that y is 2&-regular by construction. Also, for any vertex x of Y and any
word w in AUA-1 there is a unique path in Y with label w and origin x.
The definition of Schreier coset graphs also implies that a word w represents

an element of H if and only if the unique path in Y with origin xo and label

w terminates at xo. Therefore an(Y) equals the number of freely reduced

words in the alphabet A {xi,... ,x^}±1 of length n that represent elements

of H. Similarly, bn(Y) equals the number of all words in A of length n

representing elements of H. By Theorem 1.2, Y is nonamenable. Hence by
Theorem 2.5, a(Y) < 2k — 1 and ß(Y) <2k, as required.
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