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4. Suppose H < G is generated by a finite set Q inducing the word-metric
do on H. Then H is quasiconvex in G if and only if there is a C > 0
such that for any hy,h, € H

do(hi, hy) < Cdy(hy, hy)

(see [20, 32, 4, 31]).

5. The set L of all A-geodesic words is a regular language that provides a
bi-automatic structure for G. Moreover, a subgroup H < G is quasiconvex
if and only if H is L-rational, that is the set Ly ={w e L |w € H} is
a regular language [31].

6. If H,H, < G are quasiconvex, then H N H, < G is quasiconvex [68].

7. [51, 46] Let C < B < G where B is quasiconvex in G (and hence B
is hyperbolic) and C is quasiconvex in B. Then C is quasiconvex in
G [51, 46].

8. Let C < B < G where C is quasiconvex in G and. where B is word-
hyperbolic. Then C is quasiconvex in B [51, 46]: |

9. Suppose H < G is an infinite quasiconvex Subgroup. Then H has finite
index in its commensurator Commg(H) (see [51]), where Commg(H). .=
{geG|[H g 'HgNH] < 0o and [g"'Hg : g 'HgN H] < oc}.

Part 1 of the above proposition implies that a nonelementary subgroup of
a hyperbolic group is nonamenable.

5. PROOF OF THE MAIN RESULT

Let G be a noﬁelementary word-hyperbolic group with a finite generating
set A. Let X =I(G,A) be the Cayley graph of G with the word metric dy .
Let 6 > 1 be an integer such that the space (I'(G,A),da) is 6-hyperb01fc. Let
H < G be a quasiconvex subgroup of infinite index in G. These conventions,
unless specified otherwise, will be fixed for the remainder of the paper.

We shall need the following useful fact:

LEMMA 5.1. There exists an integer constant K = K(G,H,A) > 0 with
the following properties.

Assume g € G is shortest with respect to dy in the coset class Hg. Then
for any h € H we have (g,h); < K (and hence (g,H); < K).
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Proof. The conclusion of Lemma 5.1 follows directly from the proofs
of Lemma 4.1 and Lemma 4.5 of [4]. We will present the argument for
completeness. For the hyperbolic space X = I'(G,A) choose ¢’ > 0 as in
part 2 of Proposition 3.3. Let € > 0 be such that H is an e-quasiconvex
subset of X. |

Let g € G be a shortest element of Hg, so that for any 7 € H we have
\hgl, < |g|,- We claim that (h,g); < e+ ¢’ for any h € H.

Suppose not, that is (%,g); > € + ¢’ for some h € H. Consider two
geodesic segments [1,g] and [1,A] in X and let ¢ € [1,A], s € [1,g] be
such that ds(1,s) = da(1,1) = (h, g);. Thus da(s,t) < ' by the choice of ¢’.
Since H is e-quasiconvex in X, there is A’ € H such that ds(z,n') < €. Then

(W) 'g|, =dall, g) < da(l',0) + da(t,s) + da(s, g)
S 6+5+ IglA - (hag)l A |glA7

which contradicts the assumption that g is shortest in Hg.

LEMMA 5.2. Let T1,T, > 0 be some positive numbers. Let g € G be
such that (g,H); < T\ and |g|, > Ty +T> + 6. Let f € G be such that
lflA < T2 Then (gf,H)l < T1 +5

Proof. Note that |g|, = (g,9/)1 + (1,9f)g. Since (I, gf)g < d(g, gf) =
|fl4 < T2, we conclude that

@9 =gl — 1,9y >T1+ T +6~T, =T, +6.
Therefore for any 4 € H we have .
Tl +5 Z (gah)l + 5 2 mln{(Q?Qf)l)(gf7h)l}

and hence (gf,h); < T; + § because (g,g9f); > Ty + 6. Since h € H was
arbitrary, this means that (gf, H); < T; + 6.

LEMMA 5.3. Suppose gi,9» € G are such that Hg, = Hg,. Then there
is h € H such that hg, = g, and that

|7y < (g1, H)1 + (g2, ) -
Proof. Since Hgy = Hgs, there is h € H with hg; = g,. Hence

|Aly = (B, g1 + (1, hg)n = (B, g2)1 + (7Y, g1 < (go, H), + (91, H)1 -
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Proof of Theorem 1.2. Let K = K(G,H,A) > 0 be the constant provided
by Lemma 5.1. Put Y = I'(G, H,A). Thus Y is a connected 2m-regular infinite
graph, where m is the number of elements in A. Denote the simplicial metric
on Y by dy.

Let N be the number of all elements g € G with |g|, < 2K +24. In
particular ¥ has at most N vertices within distance 2K + 2§ of the coset
Hl e VY.

Since G is nonelementary word-hyperbolic and thus nonamenable, the
Cayley graph X = I'(G,A) is nonamenable. By part 4 of Proposition 2.3 there
is a constant k' > 0 such that for any finite nonempty subset S of G the
k' -neighborhood of S in X has at least 4N|S| vertices. Let N; be the number
of elements of G of length at most K+§+k". Choose k" > 1 such that for any
vertex Hg € VY with dy(H1,Hg) < K+ 6§ + k' the k" -neighborhood of Hyg
has at least 4N; vertices. Such k” exists since by assumption [G : H] = co
and hence the graph Y is infinite. Set k := max{k’,k"'}.

Suppose now that F C VY is a finite nonempy subset. Write F = F; Ll F,
where F; is the intersection of F with the closed ball of radius K + 6 + &’
in Y.

If |Fy| > |F|/2, then |F| < 2N; and the k-neighborhood of F in Y
has at least 4N, > 2|F| vertices. Suppose now that |F;| < |F|/2, so that
|F,| > |F|/2. Then

F, ={Hg,...,Hg}

where |F,| =t and where each ¢; € G is shortest in Hg; with |g;|, >
K+ §+k. By Lemma 5.1 (¢g;,H); < K. By Lemma 5.2 for any f € G with
|fl, < k' and for each i=1,...,¢t we have (g;f,H); < K+6.

Let S := {g1,...,9;} and let S’ be the set of all vertices of X
contained in the k'-neighborhood of S in X. By the choice of k' we have
|S’| > 4N|S| = 4N|F,|. On the other hand, Lemma 5.3 implies that if g, ¢’ € §’
are such that Hg = Hg' then hg = ¢’ for some h € H with |h|, <2K+26.
By the choice of N this means that the set F' := {Hg | g € S’} contains at
least

|S"|/N = 4AN|F,|/N = 4|F,| > 2|F|

distinct elements. However, F’ is obviously contained in the k-neighborhood
of F in Y. |

We have verified that for any finite nonempy subset FF C VY the
k-neighborhood of F in Y contains at least 2|F| vertices. By the Doubling
Condition (part 3 of Proposition 2.3) this implies that Y is nonamenable.
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We can now obtain Corollary 1.4 stated in the Introduction.

COROLLARY 5.4. Let G = (xi,...,xx | r1,...,m) be a nonelementary
word-hyperbolic group and let H < G be a quasiconvex subgroup of infinite
index. Let a, be the number of freely reduced words in A = {xi,... X Tl
of length n that represent elements of H. Let b, be the number of all words
in A of length n that represent elements of H. Then

limsupv/a, < 2k —1

n—o0o

and

lim sup \/—l;; < 2k.
n—oo

Proof Note that k > 2 since G is nonelementary. Put A = {xi,...,x}
and Y =I'(G,H,A). We choose xy := H1 € VY as the base-vertex of Y. Note
that Y is 2k-regular by construction. Also, for any vertex x of ¥ and any
word w in AUA™! there is a unique path in Y with label w and origin x.
The definition of Schreier coset graphs also implies that a word w represents
an element of H if and only if the unique path in ¥ with origin xy and label
w terminates at xo. Therefore a,(Y) equals the number of freely reduced
words in the alphabet A = {xy,...,x}*! of length n that represent elements
of H. Similarly, b,(Y) equals the number of all words in A of length n
representing elements of H. By Theorem 1.2, Y is nonamenable. Hence by
Theorem 2.5, a(Y) < 2k — 1 and pB(Y) < 2k, as required.
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