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4. Quasiconvex subgroups of hyperbolic groups

Detailed background information on quasiconvex subgroups of hyperbolic

groups can be found in [1, 4, 20, 31, 38, 34, 32, 51, 54, 68] and other sources.

Convention 4.1. Suppose G is a finitely generated group with a fixed

finite generating set A. Let X r(G,A) be the Cayley graph of G with

respect to A. We will denote the word-metric corresponding to A on I by

dA. Also, for g G G we will denote \g\A := dA(l,g). For a word w in

the alphabet AUA-1 we will denote by w the element of G represented

by w.

Definition 4.2 (Quasiconvexity). For e > 0 a subset Z of a metric space

(X,d) is e-quasiconvex if, for any Z\,Z2 £ Z and any geodesic [zi,Z2] in X,
the segment [zi,Z2] is contained in the closed e-neighborhood of Z. A subset

Z Ç X is quasiconvex if it is e -quasiconvex for some e > 0.

If G is a finitely generated group and A is a finite generating set of G,
a subgroup H < G is quasiconvex in G with respect to A if H Ç T(G,A) is

a quasiconvex subset.

It turns out [20, 32, 4, 31] that for subgroups of word-hyperbolic groups
quasiconvexity is independent of the choice of a finite generating set for
the ambient group. Thus a subgroup H of a hyperbolic group G is termed

quasiconvex if H Ç T(G,A) is quasiconvex for some finite generating set A
of G.

We summarize some well-known basic facts regarding quasiconvex
subgroups and provide some sample references :

PROPOSITION 4.3. Let G be a word-hyperbolic group with a finite
generating set A. Let X — F(G,A) be the Cayley graph of G with the
word-metric dA induced by A. Then:

1. If H < G is a subgroup, then either H is virtually cyclic (in which case H
is called elementary,) or H contains a free subgroup F of rank two which
is quasiconvex in G (in this case H is said to be nonelementary) [20, 32].

2. Every cyclic subgroup of G is quasiconvex in G [1, 20, 32].

3. If H < G is quasiconvex then H is finitely presentable and word-
hyperbolic [1, 20, 32].
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4. Suppose H < G is generated by a finite set Q inducing the word-metric
dç> on H. Then H is quasiconvex in G if and only if there is a C > 0

such that for any h\, h2 G H

dQ(hi, h2) < CdA{hi, h2)

(see [20, 32, 4, 31]).

5. The set C of all A-geodesic words is a regular language that provides a

bi-automatic structure for G. Moreover, a subgroup H < G is quasiconvex

if and only if H is C-rational, that is the set Ch — {w G C f W E H} is

a regular language [31].

6. IfHuH2 < G are quasiconvex, then H\ fl H2 < G is quasiconvex [68],

7. [51, 46] Let C < B < G where B is quasiconvex in G (and hence B
is hyperbolic) and C is quasiconvex in B. Then C is quasiconvex in
G [51, 46].

8. Let C < B < G where C is quasiconvex in G and where B is word-

hyperbolic. Then C is quasiconvex in B [51, 46].

9. Suppose H < G is an infinite quasiconvex subgroup. Then H has finite
index in its commensurator Commc(H) (see [51]), where Commc(H) :=
{g G G I [H : g~l Hg DH] < oo and [g~lHg : g~lHg H H] < oo}.

Part 1 of the above proposition implies that a nonelementary subgroup of
a hyperbolic group is nonamenable.

5. Proof of the main result

Let G be a nonelementary word-hyperbolic group with a finite generating
set A. Let X T(G,A) be the Cayley graph of G with the word metric dA.

Let 5 > 1 be an integer such that the space (T(G,A),dA) is ö-hyperbolic. Let

H < G be a quasiconvex subgroup of infinite index in G. These conventions,
unless specified otherwise, will be fixed for the remainder of the paper.

We shall need the following useful fact:

LEMMA 5.1. There exists an integer constant K K(G,H,A) > 0 with
the following properties.

Assume g G G is shortest with respect to dA in the coset class Hg. Then

for any h G H we have (g,h)\ < K (and hence (g,H)\ < K).
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