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5 LORENTZIAN HOLONOMY AND HOMOGENEOUS SUBMANIFOLDS OF H"

In this section we show how the theory of homogeneous submanifolds
of the hyperbolic space H" can be used to obtain general results about the
action of a connected Lie subgroup of O(n,1) on the Lorentzian space R™!,
namely,

THEOREM 5.1 ([DO]). Let G be a connected (not necessarily closed) Lie

subgroup of SO(n,1) and assume that the action of G on the Lorentzian
{ space R™!' is weakly irreducible. Then either G acts transitively on H" or

G acts transitively on a horosphere of hyperbolic space. Moreover, if G acts

i irreducibly, then G = SOgp(n, 1).

We will explain later the concept of weak irreducibility, and we will also

! sketch the proof of the above theorem. First, we observe that Theorem 5.1

has an immediate corollary, which provides a purely geometric answer to a

| question posed in [BI].

COROLLARY 5.1 (M. Berger [B1], [B2]). Let M be a Lorentzian manifold

- of dimension n. If the restricted holonomy group acts irreducibly on TM it
. coincides with SOy(n, 1). In particular, if M is locally symmetric then it has

constant sectional curvature.

Before giving the ideas of the proof of Theorem 5.1, we recall some basic
facts on hyperbolic geometry.

Let (V,{,)) be a (real) vector space endowed with a nondegenerate

- symmetric bilinear form of signature (n,1). It is standard to identify V

- with the Lorentzian space R™! and Aut({,)) = O(n,1). It is well known that
~ the hyperbolic space H" can be identified with a connected component of the

set of points p € R™! such that (p,p) = —1. As in the case of the sphere,
| the distance d = d(p,q) between two points of H" can be computed by the

equation: cosh(d) = —(p, g). This equation comes from the fact that geodesics

Up

have the form exp(tv,) = cosh(||v,||t)p + sinh(||v,||f) =t . Observe that a

lvpl *

1\; connected subgroup of O(n, 1) acts on H" by isometries. An affine subspace
g+ V of R»! is called Euclidean, Lorentzian or degenerate, depending on
whether the restriction of (,) to V is positive definite, indefinite or degenerate.
A horosphere is a submanifold of the hyperbolic space which is obtained by
intersecting A" with an affine degenerate hyperplane. Thus, a degenerate
. hyperplane g + V produces a foliation of H" by parallel horospheres. The
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infinity H"(oco) is the set of equivalence classes of asymptotic geodesics. It is
not difficult to see that two geodesics exp(t.v,) and exp(t.v,/) are asymptotic

if and only if ”—Zﬁ +p = A(W%ﬂ + p’) for some real number A\. As a
consequence, we can identify the infinity H"(oco) with the set of degenerate
hyperplanes {”Zﬁ +p}t. In this way a point z at infinity defines a foliation
of H" by parallel horospheres and we say that the horosphere Q is centred
at z € H"(oo) if Q is a leaf of that foliation. An action of a subgroup G
of O(n,1) is called weakly irreducible if it leaves invariant only degenerate
subspaces.

A fundamental tool in the proof of Theorem 5.1 is the following result.

THEOREM 5.2 ([DO]). Let G be a connected (not necessarily closed) Lie
subgroup of isometries of the hyperbolic space H". Then one of the following
assertions holds :

(1) G has a fixed point.
(1) G has a unique non trivial totally geodesic orbit (possibly the full
space).
(ii1) All orbits are included in horospheres centred at the same point at

infinity.

The following fact plays an important role in the proof of Theorem 5.2:
if a connected (not necessarily closed) Lie subgroup of isometries of the
hyperbolic space H" has a totally geodesic orbit (maybe a fixed point) then
no other orbit can be minimal [DO]. A simple consequence of this fact and
Theorem 5.2 is the following

THEOREM 5.3 ([DO]). A minimal (extrinsically) homogeneous submanifold
of the hyperbolic space must be totally geodesic. .

The same fact is also true in Euclidean space [D] (see also [O4]). On the
other hand, it is well-known that there exist many non totally geodesic minimal
(extrinsically) homogeneous submanifolds in spheres [H], [HL]. Also, there
exist non totally geodesic minimal (extrinsically) homogeneous submanifolds
in non compact symmetric spaces [Br]. It is interesting to note that a subgroup
G of isometries of the Euclidean space always has a totally geodesic orbit
(possibly a fixed point or the whole space).

A key fact in the proof of Theorem 5.2 is the following observation: if a
normal subgroup H of a group G of isometries of H" has a totally geodesic
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orbit H - p of positive dimension, then G -p = H - p. This is because G
permutes H -orbits and then one can use the fact that there is a unique totally
geodesic orbit, to conclude that H-p =G p.

The next step in proving Theorem 5.2 is to study separately the.following
two cases: G is semisimple (of noncompact type) and G is not semisimple.
In this last case one first proves the theorem for abelian groups. The above
observation, applied to a normal abelian subgroup of G, implies that either
G must translate a geodesic or G fixes a point at infinity or G admits a
proper totally geodesic invariant submanifold. It follows that a connected Lie
subgroup G of O(n, 1) which acts irreducibly on R™! must be semisimple.

When G is a semisimple Lie group we use an Iwasawa decomposition
G = NAK. Then one proves that the proper (solvable) subgroup NA of G
% has a minimal orbit which is also a G-orbit. For this, choose a fixed point
a p of the compact group K (which always exists by a well known theorem
' of Cartan). It is possible to prove that the isotropy subgroup G, of G at p
agrees with K. Then the mean curvature vector H of the orbit G-p = NA-p
B is invariant by the isotropy subgroup at p and, if it is not equal to zero,
the G-orbits through points on normal K -invariant geodesics turn out to be
@ homothetical to the orbit G- p. Observe that these orbits are also NA orbits.
| Finally, one can control the volume element of these orbits in terms of Jacobi
fields and prove that there exists a minimal G-orbit which is also a NA-orbit.

Finally, one shows that if G has a fixed point z at infinity then either G
g has a totally geodesic orbit (possibly G acts transitively) or it has fixed points
in H" or all orbits of G are contained in horospheres centred at the same point
8 : at infinity. This is because, when G has neither fixed points in H” nor orbits
@ in horospheres, one can construct a codimension one normal subgroup N of G
such that all N -orbits are contained in the horosphere foliation defined by z.
@ Then N acts on horospheres by isometries and one uses the fact that N must
have a totally geodesic orbit in each horosphere (because each horosphere is
# an Euclidean space). Finally, it is not hard to show that the union of all these
totally geodesic orbits over all horospheres is a totally geodesic G-invariant
#® submanifold of H". Now an induction argument, involving the dimension of
# the Lie group G and the dimension of the corresponding hyperbolic space
H", completes the proof of Theorem 5.2.

The proof of Theorem 5.1 runs as follows: Assume that G does not act
| transitively in H". Then G-orbits must be contained in horospheres. But if an
- orbit is a proper submanifold of one horosphere, one can construct a proper
totally geodesic G-invariant submanifold as the union of the parallel orbits to
| totally geodesic orbits of the action of G, restricted to the horosphere. Then
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one obtains a contradiction because totally geodesic submanifolds are obtained
by intersecting the hyperbolic space H" with Lorentzian subspaces. Thus, G
must act transitively on each horosphere.

Finally, if G acts irreducibly then G must act transitively on the hyperbolic
space and must be semisimple of noncompact type by a previous observation.
Then, showing that the isotropy group at some point agrees with a maximal
compact subgroup, the second part of the theorem follows from the theory of
Riemannian symmetric spaces of noncompact type [He].
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