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THE NONAMENABILITY OF SCHREIER GRAPHS
FOR INFINITE INDEX QUASICONVEX
SUBGROUPS OF HYPERBOLIC GROUPS

by Ilya KAPOVICH

ABSTRACT. We show that if H is a quasiconvex subgroup of infinite index in a
nonelementary hyperbolic group G then the Schreier coset graph for G relative to H
is nonamenable.

1. INTRODUCTION

A connected graph of bounded degree X is nonamenable if X has nonzero
Cheeger constant or, equivalently, if the spectral radius of the simple random
walk on X is less than one (see Section 2 below for more precise definitions).
Nonamenable graphs play an increasingly important role in the study of
various probabilistic phenomena, such as random walks, harmonic analysis,
Brownian motion, and percolations on graphs and manifolds (see for example
[2, 5, 6, 7, 15, 17, 18, 24, 30, 43, 44, 62, 71, 72]), as well as in the study
of expander families of finite graphs (see for example [52, 66, 67]).

It is well-known that a finitely generated group G is nonamenable if and
only if the Cayley graph of G with respect to some (any) finite generating
set 1s nonamenable. The notion of a word-hyperbolic group was introduced
by M. Gromov [40] and has played a central role in Geometric Group Theory
for the last fifteen years. Word-hyperbolic groups are nonamenable unless
they are virtually cyclic. Thus the Cayley graphs of word-hyperbolic groups
provide a large and interesting class of nonamenable graphs. In this paper we

investigate nonamenability of Schreier coset graphs corresponding to subgroups
of hyperbolic groups.
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We recall the definition of a Schreier coset graph:

DEFINITION 1.1. Let G be a group and let 7: A — G be a map where A
is a finite alphabet such that w(A) generates G (we refer to such an A as a
marked finite generating set or just a finite generating set of G). Let H < G
be a subgroup of G. The Schreier coset graph (or the relative Cayley graph)
I'(G,H,A) for G relative to H with respect to A is an oriented labeled graph
defined as follows:

1. The vertices of I' = I(G,H,A) are precisely the cosets of H in G, that
is VI':={Hg | g € G}.

2. The set of positively oriented edges of I'(G,H,A) 1s in one-to-one
correspondence with the set VI' x A. For each pair (Hg,a) € VI' x A
there is a positively oriented edge in I'(G,H,A) from Hg to Hgm(a)
labeled by the letter a.

Thus the label of every path in I'(G,H,A) is a word in the alphabet
AUA~! . The graph I'(G, H, A) is connected since m(A) generates G. Moreover,
I'(G,H,A) comes equipped with a natural simplicial metric obtained by giving
every edge length one.

We can identify the Schreier graph I'(G,H,A) with the 1-skeleton of the
covering corresponding to H < G of the presentation complex of G based
on any presentation of the form G = (A | R). If M is a closed Riemannian
manifold and H < G = m;(M), then the Schreier graph I'(G,H,A) is quasi-
isometric to the covering space of M corresponding to H. If H is normal
in G and G; = G/H is the quotient group, then I'(G,H,A) is exactly the
Cayley graph of the group G; with respect to A. In particular, if H =1
then I'(G,1,A) is the standard Cayley graph of G with respect to A, denoted
I'(G,A). .

A subgroup H of a word-hyperbolic group G is said to be quasiconvex
in G if for any finite generating set A of G there is ¢ > 0 such that
every geodesic in I'(G,A) with both endpoints in H 1s contained in the
e-neighborhood of H in I'(G,A). Quasiconvex subgroups are closely related
to geometric finiteness in the Kleinian group context [69]. They enjoy a number
of particularly good properties and play an important role in hyperbolic group
theory and its applications (see for example [3, 4, 8, 31, 34, 35, 36, 37, 38,
42, 45, 46, 48, 51, 53, 55, 61, 70]).

Our main result is the following:
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THEOREM 1.2. Let G be a nonelementary word-hyperbolic group with a
marked finite generating set A. Let H < G be a quasiconvex subgroup of
infinite index in G. Then the Schreier coset graph 1'(G,H,A) is nonamenable.

The study of Schreier graphs arises naturally in various generalizations
of J. Stallings’ theory of ends of groups [23, 29, 60, 61, 63]. The case
of virtually cyclic (and hence quasiconvex) subgroups of hyperbolic groups
is particularly important to understand in the theory of JSJ-decomposition
for hyperbolic groups originally developed by Z. Sela [65] and later by
B. Bowditch [11] (see also [59, 23, 28, 64] for various generalizations of
the JSJ-theory). A variation of the Fglner criterion of nonamenability (see
Proposition 2.3 below), when the Cheeger constant is defined by taking the
infimum over all finite subsets containing no more than a half of all the
vertices, is used to define an important notion of expander families of finite
graphs. Most known sources of expander families involve taking Schreier coset
graphs corresponding to subgroups of finite index in a group with the Kazhdan
property (T) (see [52, 66, 67] for a detailed exposition on expander families
and their connections with nonamenability).

Since nonamenable graphs of bounded degree are well-known to be
transient with respect to the simple random walk, Theorem 1.2 implies
that I'(G,H,A) is also transient. M. Gromov [40] stated (see R. Foord [27]
and I. Kapovich [49] for the proofs) that for any quasiconvex subgroup H
in a hyperbolic group G with a finite generating set A, the coset graph
I'(G,H,A) is a hyperbolic metric space. A great deal is known about random
walks on hyperbolic graphs, but most of these results assume some kind of
nonamenability. Thus Theorem 1.2 together with hyperbolicity of I'(G, H,A)
and a result of A. Ancona [2] (see also [72]) immediately imply :

COROLLARY 1.3. Let G be a nonelementary word-hyperbolic group with
a finite generating set A. Let H < G be a quasiconvex subgroup of infinite
index in G and let Y be the Schreier coset graph T(G,H,A). Then:

1. The trajectory of almost every simple random walk on Y converges in the

topology of Y U Y to some point in OY (where OY is the hyperbolic
boundary).

2. The Martin boundary of a simple random walk on Y is homeomorphic
to the hyperbolic boundary OY, and the Martin compactification of Y
corresponding to the simple random walk on Y is homeomorphic to the
hyperbolic compactification Y U Y .
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Let us illustrate Theorem 1.2 for the case of a free group. Let F = F(a, b)
be free of rank two and let H < F be a finitely generated subgroup of
infinite index (which is therefore quasiconvex [68]). Set A = {a,b}. Then the
Schreier graph Y = I'(F, H,A) looks like a finite graph with several infinite
tree-branches attached to it (the “branches” are 4-regular trees except for the
attaching vertices). In this situation it is easy to see that Y has positive Cheeger
constant and so Y is nonamenable. Alex Lubotzky and Andrzej Zuk pointed
out to the author that if G is a group with the Kazhdan property (T), then
for any subgroup H of infinite index in G the Schreier coset graph for G
relative to H is nonamenable. There are many examples of word-hyperbolic
groups with Kazhdan property (T) (see for instance [73]) and in view of
Theorem 1.2 it would be particularly interesting to investigate if they can
possess non-quasiconvex finitely generated subgroups.

Nonamenability of graphs is closely related to cogrowth:

COROLLARY 14. Let G = {x1,...,Xx | r1,...,"m) be a nonelementary
word-hyperbolic group and let H < G be a quasiconvex subgroup of infinite
index. Let a, be the number of freely reduced words in A = {xi,...,x}*!
of length n representing elements of H. Let b, be the number of all words
in A of length n that represent elements of H. Then

lim sup v/a, < 2k — 1

n—oo

and
limsup v/ b, < 2k.

n—oco

In [10, 50] Theorem 1.2 and Corollary 1.4 play a useful role in obtaining
results about “generic-case” complexity of the membership problem as well
as about some interesting measures on free groups.

It is easy to see that the statement of Theorem 1.2 need not hold for finitely
generated subgroups which are not quasiconvex. For example, a remarkable
construction of E. Rips [58] states that for any finitely presented group Q
there is a short exact sequence

1 K—-G—-0—1,

where G is nonelementary torsion-free word-hyperbolic and where K can be
generated by two elements (but K is usually not finitely presentable). If QO
is chosen to be infinite amenable, then [G : K] = oo and the Schreier graph
for G relative to K is amenable. Finitely presentable and even hyperbolic
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examples of such subgroups are also possible. For instance, if F is a free
group of finite rank and ¢: F — F is an atoroidal automorphism, then the
mapping torus group of ¢

My = (F,t|17'ft = ¢(f) for all f € F)

is word-hyperbolic [8, 13]. In this case My/F ~ Z and hence the Schreier
graph for My relative to F is amenable.

The author is grateful to Laurent Bartholdi, Philip Bowers, Christophe
Pittet and Tatiana Smirnova-Nagnibeda for many helpful discussions regarding
random walks, to Pierre de la Harpe and Peter Brinkmann for their careful
reading of the paper and numerous valuable suggestions and to Paul Schupp
for encouragement.

2. NONAMENABILITY FOR GRAPHS

Let X be a connected graph of bounded degree. We define the spectral
radius p(X) of X as

p(X) := lim sup /p™(x,y)

n— 00
where x,y are two vertices of X and p™(x,y) is the probability that an
n-step simple random walk starting at x will end up at y. It is well-known

that p(X) < 1 and that the definition of p(X) does not depend on the choice
of x,y.

DEFINITION 2.1 (Amenability for graphs). A connected graph X of
bounded degree is said to be amenable if p(X) = 1 and nonamenable if
p(X) < 1.

It is also well-known that nonamenability of X implies that X is transient,
that is that for a simple random walk on X the probability of ever returning
to the basepoint is less than 1 (see for example Theorem 51 of [16]). We
refer the reader to [16, 71, 72] for comprehensive background information
about random walks on graphs and for further references on this topic.

CONVENTION 2.2. Let X be a connected graph of bounded degree with
the simplicial metric d. For a finite nonempty subset S C VX we will denote
by |S| the number of elements in S.
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If S is a finite subset of the vertex set of X and k£ > 1 is an integer,
we will denote by N,f{(S) = Ni(S) the set of all vertices v of X such that
d(v,S) < k. Also, we will denote 8%S = 8S := N(S) — S.

The number
95|
§

is called the Cheeger constant or the isoperimetric constant of X.

1(X) = inf{ | S is a finite nonempty subset of the vertex set of X}

There are many alternative definitions of nonamenability :

PROPOSITION 2.3. Let X be a connected graph of bounded degree with
the simplicial metric d. Then the following conditions are equivalent :

1. The graph X is nonamenable.
2. (Fglner Criterion) We have u(X) > 0.

3. (Gromov’s Doubling Condition) There is some k > 1 such that for any
finite nonempty subset S C VX we have

NS = 2[S].

4. For any integer q > 1 there is some k > 1 such that for any finite
nonempty subset S C VX we have

IN(S)| > qlS].

5. For some 0 < o <1 we have p™(x,y) = o(c") for any x,y € VX.

6. Let W(X) be the pseudogroup of “bounded perturbations of the identity”,
that is W(X) consists of all bijections ¢ between subsets of VX such that

sup d(x, p(x)) < oo
xEdom(¢p)

Then W(X) admits a “paradoxical decomposition”, that is there exist
nonempty subsets Y1,Y, of VX and ¢1: Y1 — VX, ¢y: Yo — VX such
that ¢1,¢0, € W(X), VX =Y UY, and ¢1(Y1) = ¢1(Y2) = VX.

7. (“Grasshopper Criterion”) There exists a map ¢: VX — VX such that

sup d(x, ¢(x)) < oo
xeEVX

and such that for any x € VX we have |¢~'(x)| > 2.
8. There exists a map ¢: VX — VX such that

sup d(x, p(x)) < oo
xeVX

and such that for any x € VX we have |¢~(x)| = 2.
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9. The bottom of the spectrum for the combinatorial Laplacian operator on
X is > 0 (see [21] for the precise definitions).

10. We have H(L)‘f (X) = 0 (see [9] for the precise definition of the uniformly
finite homology groups HY ).

11. We have H(()l”)(X) =0 for any 1 < p < oo (see [24] for the precise
definition of H,(Z” ) ).

All of the above statements are well-known, but we will still provide some
sample references. The fact that (1), (2), (5) and (6) are equivalent is stated
in Theorem 51 of [16]. The fact that (3), (4), (6), (7) and (8) are equivalent
follows from Theorem 32 of [16]. The equivalence of (2) and (9) is due to
J. Dodziuk [21]. J. Block and S. Weinberger [9] established the equivalence
of (2) and (10). Finally, G. Elek [24] proved that (2) is equivalent to (11).

One can characterize amenability of regular graphs in terms of cogrowth.

DEFINITION 2.4. Let X be a connected graph of bounded degree with a
base-vertex xo. Let a, = a,(X,xp) be the number of reduced edge-paths of
length n from xy to xo. Let b, = b,(X,xo) be the number of all edge-paths
of length n from x, to xp. Set

a(X) :=limsup+v/a, and B(X):=limsup/b,.

n—roo n— 00

Then we will call a(X) the cogrowth rate of X and we will call B(X) the
non-reduced cogrowth rate of X. These definitions are independent of the
choice of x;.

It is easy to see that for a d-regular connected graph X we have
a(X) <d-—-1 and B(X) < d. Moreover, p(X) = @. The following result
was originally proved by R. Grigorchuk [39] and J. Cohen [19] for the Cayley
graphs of finitely generated groups and by L. Bartholdi [5] for arbitrary regular
graphs.

THEOREM 2.5 ([5]). Let X be a connected d-regular graph with d > 3.
Set o = a(X), B =pPX) and p = p(X). Then

= fl1<a<yd—1
VLML o) fd—T1<a<d—1.

In particular p <1 <= a<d—-1 < B <d.

p:
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3. HYPERBOLIC METRIC SPACES

We refer the reader to [1, 4, 14, 20, 25, 32, 40] for the basic information
about Gromov-hyperbolic metric spaces. We briefly recall the main definitions.

If (X,d) is a geodesic metric space and x,y € X, we shall denote by [x, y]
a geodesic segment from x to y in X.

DEFINITION 3.1 (Gromov product). Let (X,d) be a metric space and
suppose x,y,z € X. We set

1
(%, 3)z = 7ld(z,%) +d(z,y) — dlx, y)].

Note that (x,y), = (y,x);.

DEFINITION 3.2 (Hyperbolic metric space [1]). Let (X,d) be a geodesic
metric space. We say that (X,d) is d&-hyperbolic (where § > 0) if for any
p,x,y,z € X we have:

(X, )p > min{(x, 2)p, ¥, 2)p} — 9.

The space X is said to be hyperbolic if it is J-hyperbolic for some § > 0.
There are many equivalent definitions of hyperbolicity, for example:

PROPOSITION 3.3 ([1, 20, 32]). Let (X,d) be a geodesic metric space.

Then the following conditions are equivalent.

1. The space X is hyperbolic. ,

2. There exists a constant &' > 0 such that if x,y,z € X and y' € [x,y],
7 € [x,2] are such that d(x,y") = d(x,2') < (v,2)x then d(y.,z) < ¢'.

3. (Thin Triangles‘ Condition) There exists 6" > 0 such that for any
x,y,z € X, for any geodesic segments [x,y], [x,z] and [y,z] and for any
point p € [x,y] there is a point q € [x,z] U [y, z] such that d(p,q) < ¢".

DEFINITION 3.4 (Word-hyperbolic group). A finitely generated group G
is said to be word-hyperbolic if for some (and hence for any) finite generating

set A of G the Cayley graph I'(G,A) is hyperbolic.

DEFINITION 3.5 (Gromov product for sets). Let (X,d) be a metric space.
Let x€ X and Q,Q C X. Define (Q,Q), :=sup{(¢q,9¢')x | g€ O, ¢ € Q'}.
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4. QUASICONVEX SUBGROUPS OF HYPERBOLIC GROUPS

Detailed background information on quasiconvex subgroups of hyperbolic
groups can be found in [1, 4, 20, 31, 38, 34, 32, 51, 54, 68] and other sources.

CONVENTION 4.1. Suppose G is a finitely generated group with a fixed
finite generating set A. Let X = I'(G,A) be the Cayley graph of G with
respect to A. We will denote the word-metric corresponding to A on X by
dy. Also, for ¢ € G we will denote |g|, := da(1,9). For a word w in
the alphabet A UA~! we will denote by w the element of G represented
by w.

DEFINITION 4.2 (Quasiconvexity). For € > 0 a subset Z of a metric space
(X,d) is e-quasiconvex if, for any z;,z, € Z and any geodesic [z;,z2] 1n X,
the segment [z1,z,] is contained in the closed e-neighborhood of Z. A subset
Z C X 1is quasiconvex if it is e-quasiconvex for some e > 0.

If G is a finitely generated group and A is a finite generating set of G,
a subgroup H < G is quasiconvex in G with respect to A if H C I'(G,A) i1s
a quasiconvex subset.

It turns out [20, 32, 4, 31] that for subgroups of word-hyperbolic groups
quasiconvexity is independent of the choice of a finite generating set for
the ambient group. Thus a subgroup H of a hyperbolic group G is termed
quasiconvex 1f H C I'(G,A) is quasiconvex for some finite generating set A
of G.

We summarize some well-known basic facts regarding quasiconvex sub-
groups and provide some sample references:

PROPOSITION 4.3. Let G be a word-hyperbolic group with a finite
generating set A. Let X = I(G,A) be the Cayley graph of G with the
word-metric ds induced by A. Then:

1. If H < G is a subgroup, then either H is virtually cyclic (in which case H
is called elementary) or H contains a free subgroup F of rank two which
is quasiconvex in G (in this case H is said to be nonelementary) [20, 32].
2. Every cyclic subgroup of G is quasiconvex in G [1, 20, 32].

3. If H < G is quasiconvex then H is finitely presentable and word-
hyperbolic [1, 20, 32].

‘
zl
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4. Suppose H < G is generated by a finite set Q inducing the word-metric
do on H. Then H is quasiconvex in G if and only if there is a C > 0
such that for any hy,h, € H

do(hi, hy) < Cdy(hy, hy)

(see [20, 32, 4, 31]).

5. The set L of all A-geodesic words is a regular language that provides a
bi-automatic structure for G. Moreover, a subgroup H < G is quasiconvex
if and only if H is L-rational, that is the set Ly ={w e L |w € H} is
a regular language [31].

6. If H,H, < G are quasiconvex, then H N H, < G is quasiconvex [68].

7. [51, 46] Let C < B < G where B is quasiconvex in G (and hence B
is hyperbolic) and C is quasiconvex in B. Then C is quasiconvex in
G [51, 46].

8. Let C < B < G where C is quasiconvex in G and. where B is word-
hyperbolic. Then C is quasiconvex in B [51, 46]: |

9. Suppose H < G is an infinite quasiconvex Subgroup. Then H has finite
index in its commensurator Commg(H) (see [51]), where Commg(H). .=
{geG|[H g 'HgNH] < 0o and [g"'Hg : g 'HgN H] < oc}.

Part 1 of the above proposition implies that a nonelementary subgroup of
a hyperbolic group is nonamenable.

5. PROOF OF THE MAIN RESULT

Let G be a noﬁelementary word-hyperbolic group with a finite generating
set A. Let X =I(G,A) be the Cayley graph of G with the word metric dy .
Let 6 > 1 be an integer such that the space (I'(G,A),da) is 6-hyperb01fc. Let
H < G be a quasiconvex subgroup of infinite index in G. These conventions,
unless specified otherwise, will be fixed for the remainder of the paper.

We shall need the following useful fact:

LEMMA 5.1. There exists an integer constant K = K(G,H,A) > 0 with
the following properties.

Assume g € G is shortest with respect to dy in the coset class Hg. Then
for any h € H we have (g,h); < K (and hence (g,H); < K).
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Proof. The conclusion of Lemma 5.1 follows directly from the proofs
of Lemma 4.1 and Lemma 4.5 of [4]. We will present the argument for
completeness. For the hyperbolic space X = I'(G,A) choose ¢’ > 0 as in
part 2 of Proposition 3.3. Let € > 0 be such that H is an e-quasiconvex
subset of X. |

Let g € G be a shortest element of Hg, so that for any 7 € H we have
\hgl, < |g|,- We claim that (h,g); < e+ ¢’ for any h € H.

Suppose not, that is (%,g); > € + ¢’ for some h € H. Consider two
geodesic segments [1,g] and [1,A] in X and let ¢ € [1,A], s € [1,g] be
such that ds(1,s) = da(1,1) = (h, g);. Thus da(s,t) < ' by the choice of ¢’.
Since H is e-quasiconvex in X, there is A’ € H such that ds(z,n') < €. Then

(W) 'g|, =dall, g) < da(l',0) + da(t,s) + da(s, g)
S 6+5+ IglA - (hag)l A |glA7

which contradicts the assumption that g is shortest in Hg.

LEMMA 5.2. Let T1,T, > 0 be some positive numbers. Let g € G be
such that (g,H); < T\ and |g|, > Ty +T> + 6. Let f € G be such that
lflA < T2 Then (gf,H)l < T1 +5

Proof. Note that |g|, = (g,9/)1 + (1,9f)g. Since (I, gf)g < d(g, gf) =
|fl4 < T2, we conclude that

@9 =gl — 1,9y >T1+ T +6~T, =T, +6.
Therefore for any 4 € H we have .
Tl +5 Z (gah)l + 5 2 mln{(Q?Qf)l)(gf7h)l}

and hence (gf,h); < T; + § because (g,g9f); > Ty + 6. Since h € H was
arbitrary, this means that (gf, H); < T; + 6.

LEMMA 5.3. Suppose gi,9» € G are such that Hg, = Hg,. Then there
is h € H such that hg, = g, and that

|7y < (g1, H)1 + (g2, ) -
Proof. Since Hgy = Hgs, there is h € H with hg; = g,. Hence

|Aly = (B, g1 + (1, hg)n = (B, g2)1 + (7Y, g1 < (go, H), + (91, H)1 -
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Proof of Theorem 1.2. Let K = K(G,H,A) > 0 be the constant provided
by Lemma 5.1. Put Y = I'(G, H,A). Thus Y is a connected 2m-regular infinite
graph, where m is the number of elements in A. Denote the simplicial metric
on Y by dy.

Let N be the number of all elements g € G with |g|, < 2K +24. In
particular ¥ has at most N vertices within distance 2K + 2§ of the coset
Hl e VY.

Since G is nonelementary word-hyperbolic and thus nonamenable, the
Cayley graph X = I'(G,A) is nonamenable. By part 4 of Proposition 2.3 there
is a constant k' > 0 such that for any finite nonempty subset S of G the
k' -neighborhood of S in X has at least 4N|S| vertices. Let N; be the number
of elements of G of length at most K+§+k". Choose k" > 1 such that for any
vertex Hg € VY with dy(H1,Hg) < K+ 6§ + k' the k" -neighborhood of Hyg
has at least 4N; vertices. Such k” exists since by assumption [G : H] = co
and hence the graph Y is infinite. Set k := max{k’,k"'}.

Suppose now that F C VY is a finite nonempy subset. Write F = F; Ll F,
where F; is the intersection of F with the closed ball of radius K + 6 + &’
in Y.

If |Fy| > |F|/2, then |F| < 2N; and the k-neighborhood of F in Y
has at least 4N, > 2|F| vertices. Suppose now that |F;| < |F|/2, so that
|F,| > |F|/2. Then

F, ={Hg,...,Hg}

where |F,| =t and where each ¢; € G is shortest in Hg; with |g;|, >
K+ §+k. By Lemma 5.1 (¢g;,H); < K. By Lemma 5.2 for any f € G with
|fl, < k' and for each i=1,...,¢t we have (g;f,H); < K+6.

Let S := {g1,...,9;} and let S’ be the set of all vertices of X
contained in the k'-neighborhood of S in X. By the choice of k' we have
|S’| > 4N|S| = 4N|F,|. On the other hand, Lemma 5.3 implies that if g, ¢’ € §’
are such that Hg = Hg' then hg = ¢’ for some h € H with |h|, <2K+26.
By the choice of N this means that the set F' := {Hg | g € S’} contains at
least

|S"|/N = 4AN|F,|/N = 4|F,| > 2|F|

distinct elements. However, F’ is obviously contained in the k-neighborhood
of F in Y. |

We have verified that for any finite nonempy subset FF C VY the
k-neighborhood of F in Y contains at least 2|F| vertices. By the Doubling
Condition (part 3 of Proposition 2.3) this implies that Y is nonamenable.
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We can now obtain Corollary 1.4 stated in the Introduction.

COROLLARY 5.4. Let G = (xi,...,xx | r1,...,m) be a nonelementary
word-hyperbolic group and let H < G be a quasiconvex subgroup of infinite
index. Let a, be the number of freely reduced words in A = {xi,... X Tl
of length n that represent elements of H. Let b, be the number of all words
in A of length n that represent elements of H. Then

limsupv/a, < 2k —1

n—o0o

and

lim sup \/—l;; < 2k.
n—oo

Proof Note that k > 2 since G is nonelementary. Put A = {xi,...,x}
and Y =I'(G,H,A). We choose xy := H1 € VY as the base-vertex of Y. Note
that Y is 2k-regular by construction. Also, for any vertex x of ¥ and any
word w in AUA™! there is a unique path in Y with label w and origin x.
The definition of Schreier coset graphs also implies that a word w represents
an element of H if and only if the unique path in ¥ with origin xy and label
w terminates at xo. Therefore a,(Y) equals the number of freely reduced
words in the alphabet A = {xy,...,x}*! of length n that represent elements
of H. Similarly, b,(Y) equals the number of all words in A of length n
representing elements of H. By Theorem 1.2, Y is nonamenable. Hence by
Theorem 2.5, a(Y) < 2k — 1 and pB(Y) < 2k, as required.
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