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THEOREM 3.11 ([04]). Let G-p = M, dim(M) > 2, be an irreducible
and full homogeneous submanifold of the Euclidean space with rank (M ) > 1.
Then M is contained in a sphere.

We summarize all the above facts in the following theorem.

THEOREM 3.12. Let G-p =M, dim(M) > 2, be an irreducible and full
homogeneous submanifold of the Euclidean space. Then,

(i) rank (M) > 1 if and only if M is contained in a sphere;
(ii) rank (M) > 2 if and only if M is an orbit of an s-representation.

The next corollary uses the fact that the minimal homogeneous submani-
folds of Euclidean spaces must be totally geodesic (see [D]).

COROLLARY 3.1. Let G-p = M, dim(M) > 2, be an irreducible and
full homogeneous submanifold of the Euclidean space with parallel mean
curvature vector H. Then H # 0 and M is either minimal in a sphere or it
Is an orbit of an s-representation.

4. HOMOGENEITY AND HOLONOMY

In this section we briefly relate homogeneity and holonomy. In particular,
we are interested in the computation of the holonomy group in homogeneous
situations. We shall put special emphasis on the tangent bundle of a ho-
mogeneous Riemannian manifolds and the normal bundle of a homogeneous
submanifold of Euclidean space. But, in the first part, we will work in the
framework of arbitrary homogeneous (pseudo)metric vector bundles with a con-
nection. This is because, in our opinion, the main ideas are better understood
in this context. Another reason is that one can prove, without extra efforts,
very general results which could have applications to the pseudoriemannian
case.

Let E - M be a finite dimensional real vector bundle over M with a
covariant derivative operator V (also called a connection), which corresponds,
as usual, to a connection in the sense of distributions. More precisely, there
exists a distribution H on TE such that

(1) H®V =TE, where V is the vertical distribution;

(2) (pe)«(Hy) = H, g, for all ¢ € R, where p. is multiplication by c.
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Let (, ) be a C* metric on the fibres and let g be a Riemannian metric
on M (in fact, ( , ) and g need not be positive definite). We assume that
there is a Lie group G which acts on E by bundle morphisms, whose induced
action on M is by isometries and is transitive. Moreover, we assume that the
action on E preserves both the metric on the fibres and the connection. A
vector X in the Lie algebra G of G induces, in a natural way, a Killing
vector field X both on E and M, ie., if § € E (tesp. p € M) then
5(’(5,,) =X.§ = %|,:0 exp(tX)&, (resp. Xp) = X.p = %]tzo exp(tX)p),
where exp(tX) is the one parameter subgroup associated with X.

We will always keep in mind, as remarked above, the following two
important cases :

(a) M = G/H is a homogeneous Riemannian manifold, where G is a Lie
subgroup of the isometry group I(M), E = TM is the tangent bundle and
V is the usual Levi-Civita connection.

(b) M =G-v, where v € R” and G is a Lie subgroup of the isometry
group I(R"). Here, E = v(M) is the normal bundle endowed with the usual
normal connection V1.

The bundle E is endowed with the so-called Sasaki (Riemannian) metric §.
Namely,

(1) 'H 1s perpendicular to the vertical distribution V, defined by the tangent
space to the fibres E, = 77 1(q).

(1) The restriction of § to )V coincides with the metric on the fibres.
(ii1) 7 is a Riemannian submersion.

The Sasaki metric may be regarded as follows. A curve &(f) in E
may be viewed as a section along the curve c(t) = m(¢(¢)). In this way,
§@'(0),2'(0)) = (Z0z(0), F1o) + 9(c'(0), ' (0)).

Observe that G acts by isometries, with respect to the Sasaki metric, on E.
As is well known, the fibres E,, g € M, are totally geodesic submanifolds
of E. In fact, if ¢(¢) is a curve in M starting at ¢, then the parallel transport
7{ along c(¢) defines an isometry from E, into E.;. Let y(s) be a curve
in E, and consider f(s,?) = 77(y(s)). We have that (77(y'(s)), 77 (7'(s))) does
not depend on ¢ and so,

0_§~(35f7 3sf) 29(8t8sf’ 5Sf) 29(8s8tf7 3sf)—2<A8f33f7 3sf>

where A denotes the shape operator of E, as a submanifold of E. Then E, is
totally geodesic.

|
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We now describe how the holonomy algebra (i.e., the Lie algebra of the
holonomy group of the connection V of the bundle E = M) is linked with
the group G. As we saw above the fibres E, of the bundle E are totally
geodesic. Then the projection on E, of a Killing field X of E, induced
by some X € G, gives a Killing field B,(X) of the fibre E,. Observe

that this projection vanishes at 0,, so By(X) belongs to so(E,), the Lie
- algebra of SO(E,). The Lie algebra spanned by these B,(X) is included in
the Lie algebra of the normalizer N(Hol,) of the holonomy group Hol, in
- SO(E,). This is due to the following geometric reason: for any curve ¢ in
"M and g € G, 79 = g.7°.9g7!, since G preserves the connection (and
" so g.Hol,.g~! = Hol,,, where Hol denotes the holonomy group of the
connection on the bundle E).

Let TtX be the flow on E associated to the horizontal component [X]H of
~ the Killing field X (ie. if &, € E,, then 7X(¢,) is the parallel transport of &,
- along the curve exp(sX)-p from 0 to ). Let FX be the flow of the Killing
- field X on E, ie., F¥£(&,) := exp(X)€,. Then the fact that isometries and
parallel transport are geometric objects implies that 7X o FX = FXo7X . Taking
into account this identity, one finds that ¢, := 7%,0 FX defines a one parameter
~ group of isometries of E with the following properties: (1) ¢;(E,;) = E,, (ii)
¢:|g, belongs to N(Hol,), the normalizer in SO(E,) of the holonomy group
- Hol, and (iii) ¢;|g, = €%, where B,(X) is the claimed projection of the
Killing field X to E, (i.e. By(X)§;, = [X.éq]v, where [ ]V denotes vertical
projection). Note that (iii) i1s a simple consequence of the general fact that if
two flows FX FY commute then FXo FY = FX*Y,

The following theorem makes precise the above description and establishes,
using the transitivity of G on M, the inclusion of the holonomy algebra into
- the Lie algebra generated by the B, (X).

THEOREM 4.1 ([OSv]). The Lie algebra L, generated by {B,(X): X € G}
contains the Lie algebra of the holonomy group Hol, and is contained in the
- Lie algebra N(Holy) of its normalizer in SO(E,).

Proof. In order to illustrate better the main ideas we will only prove a
simplified version of the theorem. The inclusion in the normalizer was observed
| before. Let L, denote the Lie group associated to £, and let ¢, € E,. Let us
f; consider S¢, := G- Ly - § C E. Note that either S¢, NS, =@ or S¢, =S, ,
. for all n,,§, € E.

It is standard to show that S¢, is a subbundle of E over M (of course not
- a vector subbundle). Observe that the connected component of the fibre at ¢
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of Se¢, 18 L, - &,, since the connected component of the isotropy subgroup G,
is contained in L,. So, the restrictions X 1Se, and [)?]l‘fgg are both tangent to
q

S¢, and hence the horizontal component [)?]E‘é is also tangent to S¢ . Since
9

G acts transitively on M, {[XV]H(@,) : X € G} coincides with the horizontal
space H¢, (note that w*()?) = X).

Then H, C T,S¢, for all n € S¢, . This implies that Hol; -§, C L, - &,
where Holj; is the connected component of Hol, (i.e., the restricted holonomy
group). In other words, any orbit of HOIZ is contained in an orbit of L,.
To get the inclusion Hol® C L, one has to carry out a similar argument but
replacing E by the principal bundle over M of orthonormal basis of E. [l

APPLICATIONS

e FE =TM, the tangent bundle: in this case we will show that B, (X) =
(VX),, where X(p) =X -p, p € M (cf. [N]). Indeed,

D D 0
By(X) €= 2 exp(t) £ = o o exp(E) (o)

Ot00s o0
= gsmg—ﬂo exp(eX) - ve(s) = %]ox - 7e(s) = VeX,
where ¢ is the geodesic of M with initial condition & € E,.

If M is locally irreducible and the scalar curvature is not (identically)
zero, then the restricted holonomy group @, of M is non exceptional, i.e. it
acts on T,M as an s-representation (see [Sim, p.229]). Then @ coincides
with the connected component of its normalizer in SO(T,;M). So, the Lie
algebra of @7 is algebraically generated by {B,(X) : X € G}. More generally,
if M is not Ricci flat the same conclusion holds due to [K] and is now a
consequence of next proposition. But Alekseevsky-Kimel'feld [AK] proved
that a homogeneous Riemannian manifold cannot be Ricci flat, unless it is flat
(a conceptual proof is due to Heintze and appeared in [BB, p.553]). Then the
holonomy algebra can always be calculated in this way for a locally irreducible
M (the so-called Kostant’s method). The following result is essentially due to
Lichnerowicz and it is a consequence of Berger’s list [B1]. Since it is difficult
to find in the literature we include a simple proof.

PROPOSITION 4.1. Let M be a Riemannian manifold which is irreducible
at g € M and let g be the Lie algebra of the local holonomy group (I)zOC at
q. Let n be the normalizer of g in so(Ty;M). Then w contains g properly if
and only if M is Kdhler and Ricci flat near q.
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Proof Let us endow so(T,M) with the usual scalar product (A,B) =
—tr(A.B). Assume that n # g. If we decompose orthogonally n = g ®¢€, then
g and ¢ are ideals of n and so [g, €] = 0. Now choose 0 # J, € £. Then Jg 1s
a symmetric endomorphism which commutes with g. So, Jg commutes with
(ID}]OC and then each eigenspace of Jg defines a parallel distribution near g.
Since M is locally irreducible at ¢ we conclude, by de Rham’s Decomposition
Theorem, that J> = —c?id. We may assume, by rescaling J,, that J2 = —id.
Extending J, by parallelism we obtain a parallel almost complex structure J
on M. Thus, M is Kihler near ¢. It is well-known [KN, Proposition 4.5,
p. 149, vol.II] that the Ricci curvature Ricy of a Kihler manifold M satisfies:

L AR

sk A

Rxv,J
Ric (X, JY) = %0 7] 3 )

} If v is any curve in a small neighbourhood of ¢ joining g to p, and 7y is
| the parallel transport along -y, then

(Rx, v, Jp) = <T,Y_1RXP,YPT,7,Jq> =0

' since Jy L g. So, M is Ricci flat near g.
The above two formulas, together with the Ambrose-Singer holonomy
~ theorem also show the converse. L[]

e E = v(M), the normal bundle of a submanifold of R". Recall that
~in this case the non trivial part of the normal holonomy representation is
~an s-representation. Hence, the semisimple part of the normal holonomy
- group coincides with the connected component of its own normalizer (in the
orthogonal group). If M is an irreducible submanifold which is not a curve,

then the group G gives the parallel transport in (M) (the maximal parallel
- and flat subbundle of v(M) (see [O3]). So, in this case, the Lie algebra of
~ the normal holonomy group is algebraically generated by {B,(X): X € G}.
~ Moreover, we have that B,(X) can be regarded as the projection to the affine
- subspace g+ v,(M) of the Killing field of R" (restricted to this normal space)
~induced by X € G. So, the normal holonomy group measures how far G is
from acting polarly and how far M is from being a principal orbit (in which
case this projection would be trivial from the defimition of polarity).

- POLAR ACTIONS ON THE TANGENT BUNDLE AND SYMMETRY

We recall briefly the general notions of polar and hyperpolar actions on
- Riemannian manifolds; for more details we refer to [Da, PT2, PT1, HPTT].
Let M be a complete Riemannian manifold and let G be a closed subgroup
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of the full group of isometries of M. A complete embedded and closed
submanifold X of M is called a section if ¥ does intersect any orbit of
G in M and is perpendicular to orbits at intersection points. If there exists
a section in M then the action of G is called a polar action. Observe
that from a section we can obtain, by means of the group, sections which
contain any given point. An action is called hyperpolar if it is polar and a
section is in addition flat. Of course in the case of R” these two concepts
coincide. \

Let now M be a complete simply connected Riemannian manifold and let
TM be its tangent bundle endowed with the Sasaki metric. We will regard
M as the (Riemannian) embedded submanifold of T7M which consists of the
zero vectors. We have the following characterization of symmetric spaces in
terms of polar (or equivalently, hyperpolar) actions on 7M. The following
result was obtained by J. Eschenburg and the third author when writing the -
article [EO].

THEOREM 4.2. Let M be a simply connected complete Riemannian
manifold. Then the tangent bundle TM admits a polar action having M
as an orbit if and only if M is symmetric.

Proof. Assume M is irreducible. Let G act polarly on TM and G-0, = M.
If X is a section for this action with g € X then % C T,M, since horizontal and
vertical distributions are perpendicular with respect to the Sasaki metric. Since
Y~ meets G-orbits perpendicularly, we have that the horizontal distribution of
TM is tangent to the G-orbits. Then the parallel transport of any v € T,M
belongs to G - v. If the codimension of G -wv 1is greater than 1, then the
holonomy group does not act transitively on the (unit) sphere of T,M.
Hence M is symmetric by the theorem of Berger [B1, Sim]. If G - v
has codimension 1 then M must be two point homogeneous and hence
symmetric by [Wa] (for a conceptual proof see [Sz]). If M = M; X --- X My
is reducible, by projecting Killing vector fields to the factors we obtain a
bigger group, let us say G = Gy x -+ x-Gy_and such that G; acts polarly
on M;. |

Let us show the converse. As we noted in Section 2, the transvection group
Tr(N) acts transitively on any holonomy bundle. Then the polarity follows
from the fact the holonomy representation acts polarly. [

It follows from the above results that an irreducible homogeneous space
in which holonomy agrees with isotropy must be symmetric.
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