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4. Prime parts of torsion numbers

We recall Jensen's formula, a short argument for which can be found

in [Y086].

LEMMA 4.1 [Jensen's formula]. For any complex number a,

f log \a - e2irie\dO logmax{l, |a|}
Jo

By Lemma 4.1 the Mahler measure M(f) of a nonzero polynomial with

complex coefficients can be computed as

exp [log \f(e27r
Jo

This observation motivated the definition of Mahler measure for polynomials
in several variables. (See [B08I] or [EW99], for example.)

In [EF96], [Ev99] G.R. Everest and B.Ni Fhlathuin proved a p-adic
analogue of Jensen's formula, which we describe. Assume that a is an

algebraic integer lying in a finite extension K of Q. For every prime p
there is a /?-adic absolute value |-| the usual Archimedean absolute value

corresponding to 00. We recall the definition (see [La65] for more details) : If
p is a prime number, then \prm/n\p 1///, where r is an integer, and m,n
are nonzero integers that are not divisible by p. By convention, |0| 0.
Each \-\p extends to an absolute value \-\v on K. Let Qv denote the smallest
field which is algebraically closed and complete with respect to |-|v. Let Tv
denote the closure of the group of all roots of unity, which is in general
locally compact. Note that if p — 00, then C and Tv T. Everest
and Fhlathuin define

Mjv(t -a) exp f log |t-a\ dp exp lim - log |£ -Jt r->00 y L'J ^=1
Here J denotes the Shnirelman integral, given by the limit of sums at the

right, where one skips over the undefined summands. The above integral exists
even if a G Tv, in which case it can be shown to be zero. Moreover, one has

(4T) / log \ t Oi\vdp logmax{ 1, |a| }
JTV

which Everest and Fhlathuin refer to as a p-adic analogue of Jensen's formula.
Recall that denotes the p-component of br, the largest power of p

that divides br. The content of / G Z[t] is the greatest common divisor of
the coefficients. Using (4.1) we will prove
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THEOREM 4.2. Let (G, x) be an augmented group, and let p be a prime.

(i) If A4 has a square matrix presentation and A(t) 0, then the sequence

{K } of pure torsion numbers satisfies

lim (b(f))l^rk (content A)^
r^-^oo k

(ii) If A4 is a direct sum of cyclic modules, then the sequence of all torsion
numbers satisfies

lim (Z?^)1//r (content A)^
r—>- oo

(iii) If A4 is torsion free as an abelian group, then

lim (b^)1^ 1.

/ m 0 0 0 •• —m \
—m m 0 0

0 —m m 0 •• 0

Example 4.3. For any positive integer ra, consider the augmented group
(G, x) where G is the Baumslag-Solitar group (x,y | ymx xym) and

x: G -» Z maps x 1 and y i-a 0. One verifies that M 1Z\/(m(t — 1)).
The quotient module A4r is isomorphic to Zr/ArZr, where

Ar

\ 0 0 • • • —m m /
The matrix is equivalent by elementary row and column operations to the

diagonal matrix

(m \

\ 0/
Hence A4r Z © (Z/m)r~l, and so br — mr~l for all r. Consequently,

lim (b^)l/m(p).

The Alexander polynomial of any knot is nonzero, and its coefficients

are relatively prime. Hence the following corollary is immediate from Theorem

4.2 (iii).
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COROLLARY 4.4. For any knot k and prime p,

lira (b{P))l/r 1.
r-ïoo

Theorem 2.10 and Corollary 4.4 imply that whenever the Alexander

polynomial of k has Mahler measure greater than 1, infinitely many distinct

primes occur in the factorization of the torsion numbers br. In other words, the

homology groups Hi(MnZ) display nontrivial p-torsion for infinitely many
primes p. Since the sequence {br} is a division sequence, the number of
prime factors of br is unbounded.

What about the case in which the Alexander polynomial of k has Mahler

measure equal to 1 The argument of Section 5.7 of [Go72] shows that
the number of prime factors remains unbounded as long as the Alexander

polynomial does not divide tM — I for any M. If it does divide, then the torsion
numbers br are periodic by Section 5.3 of [Go72] (see also Corollary 2.2 of
[SiWiOO]). Hence we obtain

COROLLARY 4.5. For any knot, either the torsion numbers br are periodic
or else for any N > 0 there exists an r such that the factorization of br has

at least N distinct primes.

The proof of Theorem 4.2 requires the following lemma.

LEMMA 4.6. If f(t) cqF + • • • + e/7_ \ t + cn is a nonzero polynomial in
Z[t] with roots Ai • • • A„ (not necessarily distinct) in £lv, then

n

J J max {1, I content/1 „
i—l

Proof The argument that we present is found in [LW88]. Set aj Cj/c0
for 0 <j <n, so f(t) c0(tn -f a\tn~l H h an). Each aj is an elementary
symmetric function of the roots À;, namely the sum of products of roots taken

j at a time. Using the ultrametric property

\x + y\v~max{|x|^, I^IU

we see that if exactly k values of |A,|?i are greater than 1, then

n

m?x \aj\v W\v=IImaxP'!AflJ-
7=1
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But

max \a{j \v max{i. £1 Cn

Co
5 • • • 5

V CO
}

I content/| t
koL

Hence the lemma is proved.

Proof of Theorem 4.2. In case (i), the pure torsion number bn is equal

to I n a«>
C*=i

We have

\k\vI n a^o| koi? n iik-aa>
C*=i

v
Ct=i j= 1

where Co is the leading coefficient of A and Ai,... A„are its roots. Hence

\K\lJn\co\vYiflic-Aiy-

Cr*=i j= 1

so that

i"»l. 0exp( - J2 iog\(- a,;),
- '

;—1 'k >r,_.j= 1 Cr^=i

lim yrk \v

n fk.i,n exp / log I — A;^ dß,
i=\Jjv

which by equation (4.1) is equal to

|c0|„ tJmax{l, \Xj\v}

s
1

By Lemma 4.6 this is equal to |contentA|v. But for integers n we have
niP) \n\vl-

Now suppose fA is cyclic. As in the proof of Theorem 3.8, we let 7 be

the cyclotomic order of À and consider the subsequence of br with r in a

fixed congruence class modulo 7. Then starting with Theorem 3.3 we may
apply the argument above with A/O in place of A to show that the limit of
(\br\^)l/r along this subsequence is the p-component of the content of A/O.
But content is multiplicative and cyclotomic polynomials have content 1, so

the limit along all congruence classes is (content A)^\ The result is immediate

for direct sums of cyclic modules.

Finally, we can extend the result when M is torsion-free as an abelian

group using Theorem 3.6. But for this case the content of A is 1.


	4. Prime parts of torsion numbers

