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4. PRIME PARTS OF TORSION NUMBERS

We recall Jensen’s formula, a short argument for which can be found
in [Yo86].

LEMMA 4.1 [Jensen’s formula]. For any complex number «,

1
/ log |a — e*™?|do = logmax{1,|a|} .
0

By Lemma 4.1 the Mahler measure M(f) of a nonzero polynomial with
complex coefficients can be computed as

1
exp/ log.f(ezmg)\dO.
0

This observation motivated the definition of Mahler measure for polynomials
in several variables. (See [Bo81] or [EW99], for example.)

In [EF96], [Ev99] G.R. Everest and B.Ni Fhlathdin proved a p-adic
analogue of Jensen’s formula, which we describe. Assume that « 1is an
algebraic integer lying in a finite extension K of Q. For every prime p
there is a p-adic absolute value |-| , the usual Archimedean absolute value
corresponding to co. We recall the definition (see [La65] for more details): If
p is a prime number, then [p'm/n|, =1/p", where r is an integer, and m,n
are nonzero integers that are not divisible by p. By convention, [0], = 0.
Each ||, extends to an absolute value ||, on K. Let Q, denote the smallest
field which is algebraically closed and complete with respect to |-|,. Let T,
denote the closure of the group of all roots of unity, which is in general
locally compact. Note that if p = oo, then Q, = C and T, = T. Everest
and Fhlathuin define

My, (t — ) = exp/

.1
. log |t — af,dp = exprlggo - Z log [¢ — «f, .

¢r=1

Here | denotes the Shnirelman integral, given by the limit of sums at the
right, where one skips over the undefined summands. The above integral exists
even if o € T, , in which case it can be shown to be zero. Moreover, one has

(4.1) / log |t — a,dp = logmax{1, || },
T

v

which Everest and Fhlathdin refer to as a p-adic analogue of Jensen’s formula.
Recall that b¥ denotes the p-component of b,, the largest power of p

that divides b,. The content of f € Z[t] is the greatest common divisor of
the coefficients. Using (4.1) we will prove
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THEOREM 4.2. Let (G, x) be an augmented group, and let p be a prime.

(1) If M has a square matrix presentation and A(t) # 0, then the sequence
{b,.} of pure torsion numbers satisfies

lim (6)"/" = (content A)® .
F (0.]

(i) If M is a direct sum of cyclic modules, then the sequence of all torsion
numbers satisfies

lim (bﬁp))l/ = (content A)P .
r—0o0

(iii) If M is torsion free as an abelian group, then

lim (@) = 1

F—00

EXAMPLE 4.3. For any positive integer m, consider the augmented group
(G,x) where G is the Baumslag-Solitar group (x,y | y"x = xy") and
x:G—7Z maps x+— 1 and y — 0. One verifies that M = R, /(m(t — 1)).
The quotient module M, is isomorphic to Z"/A,Z", where

m o o0 o0 - —m
A
A, = O -m m 0 .- 0
\O 0 L —m m)

The matrix is equivalent by elementary row and column operations to the

diagonal matrix
m

0
Hence M, =2 Z @ (Z/m)~!, and so b, = m"~! for all r. Consequently,

lim P = m® .

r— 00

The Alexander polynomial of any knot is nonzero, and its coefficients
are relatively prime. Hence the following corollary is immediate from Theo-
rem 4.2 (iii).
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COROLLARY 4.4. For any knot k and prime p,

lim APV =1.

r—00

Theorem 2.10 and Corollary 4.4 imply that whenever the Alexander
polynomial of k has Mahler measure greater than 1, infinitely many distinct
primes occur in the factorization of the torsion numbers b,. In other words, the
homology groups H,(M,,Z) display nontrivial p-torsion for infinitely many
primes p. Since the sequence {b,} is a division sequence, the number of
prime factors of b, is unbounded.

What about the case in which the Alexander polynomial of k£ has Mahler
measure equal to 1 ? The argument of Section 5.7 of [Go72] shows that
the number of prime factors remains unbounded as long as the Alexander
polynomial does not divide ¥ —1 for any M. If it does divide, then the torsion
numbers b, are periodic by Section 5.3 of [Go72] (see also Corollary 2.2 of
[SiWi00]). Hence we obtain

COROLLARY 4.5. For any knot, either the torsion numbers b, are periodic
or else for any N > 0 there exists an r such that the factorization of b, has
at least N distinct primes.

The proof of Theorem 4.2 requires the following lemma.

LEMMA 4.6. If f(t) = cot" + - -+ 4+ cp—1t + ¢, is a nonzero polynomial in
Z[t] with roots \i--- , )\, (not necessarily distinct) in Q,, then

lcol, Hmax{l, |Ail, } = |content £/, .
i=1

Proof. The argument that we present is found in [LW88]. Set a; = ¢;/co
for 0 <j<n,so f(t) = cot" +at" ' +--- +a,). Bach a; is an elementary
symmetric function of the roots )\;, namely the sum of products of roots taken
J at a time. Using the ultrametric property

%+ yl, = max{|x],, ], },

we see that if exactly k values of |>\i|v are greater than 1, then

n
max |&],, = |a|, = [ [ max{1,|x],}.
j=1
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But

Cn

tent
max |a;|, = max{1, |— } = [content /1,
j

?
v CO v |COIU

Hence the lemma is proved. [

Proof of Theorem 4.2. In case (i), the pure torsion number b,k 1s equal

l I1 A(()' We have

(k=1

bul, = | IT 20| =1eol2 TT TTIC=M,.

Ce=1 Ck=1 j=1

where ¢y is the leading coefficient of A and Aq,...J\, are its roots. Hence

11y = leol, T ch |

C’k 1 j=1

= |eol, Hexp Zloglc Al S

k en=1

so that

ry—> 00

lim |b7k|1/rk lcolv HGXP/ loglt_/\jlv du,
1 T,

which by equation (4.1) is equal to
lcol, | Jmax{1,)l,}
j=1

By Lemma 4.6 this is equal to |content A|, . But for integers n we have
n® = |n|". | ‘

Now suppose M is cyclic. As in the proof of Theorem 3.8, we let v be
the cyclotomic order of A and consider the subsequence of b, with r in a
fixed congruence class modulo . Then starting with Theorem 3.3 we may
apply the argument above with A/® in place of A to show that the limit of
(Ibr|(p))1/ " along this subsequence is the p-component of the content of A/®.
But content is multiplicative and cyclotomic polynomials have ‘content 1, so
the limit along all congruence classes is (content A)? . The result is immediate
for direct sums of cyclic modules.
 Finally, we can extend the result when M is torsion-free as an abelian
group using Theorem 3.6. But for this case the content of A 1s 1. O
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