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EXAMPLE 2.11. Consider the augmented group (G, x) such that

G = (x,a | x *a*xa~%xa*, x>axa"*xa*xa~

2. —6. 2 3 4. 4 1> ’

and x: G —+7Z maps x— 1 and a > 0. A straightforward calculation shows
that M = R, /Q2f, (t—1)f), where f(f) = t*—3t+1. The Alexander polynomial
A 18 ged(2f, (t—1)f) = f, and it has Mahler measure greater than 1. However,
the topological entropy of the homeomorphism o is zero by Corollary 18.5
of [Sc95]. As in the proof of the theorem above, it follows that the torsion

numbers b, have trivial exponential growth rate; that is, limsup,_, bl/ "=1.

3. EXTENDED FOX FORMULA AND RECURRENCE

Let (G, x) be an augmented group, and A the N x M presentation matrix
for the R{-module M as in (2.1). For any positive integer r we can obtain a
presentation matrix for the finitely generated abelian group M, by replacing
each entry g(r) of A by the r x r block ¢(C,), where C, is the companion
matrix of ¢ — 1,

O 1 O 0
0 0 1 0
¢ = : z
0 0 O 1
1 0 O 0

We call the resulting N x rM matrix A(C,). The proof is not difficult. The
torsion number b, is equal to the absolute value of the product of the nonzero
elementary divisors of A(C,).

Assume first that M is a cyclic module. Then A is the 1 x 1 matrix
(A(?)), and the r x r matrix (A(C,)) presents M,. The Betti number S,
is the number of zeros of A that are r™ roots of unity. When it vanishes
the matrix (A(C,)) is nonsingular. Then all elementary divisors of the matrix
are nonzero, and their product is equal (up to sign) to the product of the
eigenvalues, which is the determinant. Fox’s formula (Proposition 2.5) follows
by choosing a basis for C” that diagonalizes the companion matrix C,; we
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then see that the eigenvalues of A(C,) are A(C), where ¢ ranges over the pll
roots of unity. In general, (3, is equal to

s= ) deg®y= ) ¢(d),

d|r d|r
Dy|A D4|A

where ®, is, as before, the d™ cyclotomic polynomial, and ¢ is Euler’s phi
function. We appeal to the following result, a special case of Theorem 2.1
of [MMBS&2].

LEMMA 3.1. Let A be an integral r X r matrix with rank r —s. Suppose
that R is an integral s X r matrix with an s X s minor invertible over Z. such
that RA = 0 and ART = 0 (where RT denotes the transpose matrix). Then
the product of the nonzero eigenvalues of A is equal to =+ det(RRT) times the
product of the nonzero elementary divisors of A.

EXAMPLE 3.2. Suppose that we have a factorization ' —1 = ®@-¥ in Z][1].
Set A = ®(C,). Then we can construct a matrix R satisfying the hypotheses
of Lemma 3.1. We regard R1/(r"— 1) as a free abelian group with generators
1,¢,...,¢"~1. Then the rows of A represent the polynomials @, ®, ..., !®
(modulo # — 1). The rank of A is r — s, where s = deg®. We take R to
be the s x r matrix with rows representing ¥, ¥, ..., "¥. Consider first
the product RA. Regarding the product of the i™ row of R with A as a
linear combination of the rows of A, we see that it represents the polynomial
=¥ .® =0 (modulo # — 1). Hence RA = 0.

The columns of A represent the polynomials ®(t—!), ®( ), ...,
1o, and so the i™ column of AR represents ®(F') - AV(®)
(modulo " —1). Since @ is a product of cyclotomic polynomials, we have
198 2@(;~1) = £®(7). (A cyclotomic polynomial has this property since its
set of roots 1s preserved by inversion, and its leading and constant coefficients
are +1.) So AR” is also zero.

Since the degree of #¥ is less than r for i < s, the s x s minor consisting
of the first s columns of R is upper triangular. The diagonal entries are the

constant term of YW, which must be 4-1. Hence this minor is invertible
over Z.

The matrix A presents R;/(®,1" —1) =2 R, /(®), a free abelian group, so
the product of its elementary divisors is 1. Lemma 3.1 implies that det(RR?)
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is equal up to sign to the product of the nonzero eigenvalues of ®(C,); that is,

(3.1) \ detRR") =+ [ @©.
=1

D(O)#0

THEOREM 3.3. Suppose that the R\ -module M is isomorphic to R /(7).
For any positive integer r, let ® be the product of the distinct cyclotomic
polynomials ®; such that d |r and ®,; | A. Then

(32) b= T1 (5)©)|
NO#0
REMARKS 3.4.

(1) We follow the convention that if no cyclotomic polynomial divides A,
then @ = 1. Clearly b, 1s a pure torsion number if and only if ® = 1. In
this case (3.2) reduces to Fox’s formula (2.2).

(11) See [Sa95] and [HS97] for more calculations and estimations of torsion
numbers b, arising from link groups.

Proof of Theorem 3.3. We write A as @ - g, for some g € Z[¢]. The
matrix A(C,), which presents M, = Ry /(A,f" — 1), has rank r —deg®. The
rank is the same as that of ®(C,). Consider the matrix R of Example 3.2. We
have RA(C,) = (R®(C,))g(C,) = 0 and also A(C,)RT = (®(C,)g(C,))RT =
g(C)(®D(C)HRT) = 0. Formula (3.2) now follows from Lemma 3.1 together
with (3.1). [

If M is a direct sum of cyclic modules, then Theorem 3.3 can be applied
to each summand and the terms produced by (3.2) multiplied together in order
to compute b, . |

When M is not necessarily a direct sum of cyclic modules, but it is
torsion-free as an abelian group, then it is “virtually” a direct sum of cyclic
modules by the following lemma, which appears as Lemma 9.1 in [Sc95]. The
main idea of the proof is to consider the natural injection of M — M ®zQ,
and use the fact that M ®z Q is a finitely generated module over the ring
Q[r*!], which is a principal ideal domain.

We recall that a polynomial in Z[f] is said to be primitive if the only
constants that divide it are £1.
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LEMMA 3.5. Assume that M is a finitely generated Ri-module that
is torsion-free as an abelian group. Then there exist primitive polynomials
Ty, T, € Z[f] such that w; | mipq for all i = 1,...,n— 1, and an
R -module injection i: M — M’ = Rq/(m) & --- ® Ry/(m,) such that
M [i(M) is finite. '

For notational convenience we identify M with its image in M’. Con-
sider the mappings p: M — M and p': M’ — M’ given by a — (' — 1a.
Clearly ker . is a submodule of ker /. We define x(r) to be the in-
dex |ker u' :ker pu|. Let b/ denote the order of the torsion subgroup of
M [(#" — 1)M’. The proof of the following theorem extends techniques
of [We80].

THEOREM 3.6. If the finitely generated Ri-module M is torsion-free as
an abelian group, then for any positive integer r,

by
(3.3) by =5

Moreover, if vy is the cyclotomic order of A, then k(r + ) = k(r) for all r.

LEMMA 3.7. Let 0 = Ay — Ay — --- — A, — 0 be an exact sequence
of finite abelian groups. Then

H |Aeven| = H |Aodd| .

Lemma 3.7 is easily proved using induction on m. We leave the details
to the reader.

Proof of Theorem 3.6. Consider the finite quotient p: M’ — M'/M and
mapping : M'/M — M’/ M given by a s (1" — 1)a. The exact diagram

0 —— M —— M —2 s M/M — 0
v dl
0 —— M —— M —2 4 M/M — 0

induces a second exact diagram
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0 0 0
0———>keru——i———>keru’———p——> keryg —— O

l l

< —

}

0 —— M s MM —— 0
“J{ NIL ﬁl

0 —— M —— M —25 M/M ——0
L |

0 —— M, _t M. ———ﬁ———>cokerﬁ—————>0
| | |
0 0 0

and hence by the Snake Lemma we obtain a long exact sequence

(34) O—kerp -ker ' Lkerm -5 M, 5 M. L coker T — 0.

Let TM, and TM. be the torsion subgroups of M, and M/, respectively.
Since ker 7 1s finite, its image under the connecting homomorphism d is
contained in TM,. Also, i maps TM, into TM/). Hence we have an
induced sequence

(3.5) 0 - ker u - ker i/ B ker § 5 TM, - TM’. L coker 1 — 0.

It is not difficult to verify that (3.5) is exact. The only nonobvious thing to
check is that the kernel of p is contained in the image of 7. To see this,
assume that p(y) = 0. By the exactness of (3.4) there exists an element
x € M, such that i(x) =y. If x ¢ TM,, then the multiples of x are distinct
in M, and each maps by i into the finite group T M/, contradicting the fact
that ker i = d(ker @) is finite.

The following sequence is exact.

(3.6) 0 — ker u'/i(ker p) > kerm — TM, — T/\/l', — coker 7 — 0.

Since M//M, is finite, ker i and coker 7 have the same order.
Lemma 3.7 now completes the proof of (3.3), «(r) being the order of
ker u' /i(ker p).
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The modules M and M’ have characteristic polynomial m,. Since M
embeds in M’ with finite index, a prime polynomial annihilates a nonzero
element of M if and only if it annihilates a nonzero element of M’. Such
polynomials are exactly the prime divisors of m,. It follows that ker 1 and
ker p/ are both periodic, with period equal to the least common multiple -
of the positive integers d such that @, divides A. Hence the same is true
for x(r). [

THEOREM 3.8. Assume that the finitely generated Ri-module M is a
direct sum of cyclic modules or is torsion free as an abelian group. Then the
set of torsion numbers b, satisfies a linear homogeneous recurrence relation
with constant coefficients.

Proof. Write

a=(TT @)
deD
where D = {d : ®; | A}, and let v be the cyclotomic order of A. We

will show that for each R € {0,...,v — 1}, the subsequence of b, with r
congruent to R modulo ~y satisfies

(3.7) b, = Crr™|Res(g,1" — 1),
where Cg, My are constants,

Mp=) ¢dea—1) <M= dd)es—1).

deD deD

dIR
As we saw in section 2, the sequence |Res(g,s” — 1)| satisfies a linear homo-
geneous recurrence relation with characteristic polynomial p of degree at most
2degg  We may normalize p to be monic, p(f) = H (t—A\)Y, with ); dis-
tinct. The general solution to this recurrence relation has the form Z qi(NA;,
where g; is a polynomial of degree less than n; (see [Bro2], Theorem 7.2.2,
for example). Each of the sequences a{® = CrrM*|Res(g,#” — 1)| satisfies
the recurrence relation given by p(f) = Hj(t — /\j)”f+M . It also satisfies the
recurrence relation given by P(r) = [[;(#" — 7)™ since p divides P
Because the powers of ¢ occurring in P are all multiples of v, the latter
recurrence relation also describes the sequence {b,}, which is composed of

the subsequences bryyn = a%lw We note that the degree of P is at most
V(M + 1)2%e9
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First we consider the case when M is cyclic. Given R we set

cD:chd.

dIR

By Theorem 3.3 we have

o] TT ()] = (3550
g

r— €
:H\RCS(CDd, 1) ’
D
, {ed—l if d | R,

deD
€q = .
ey if diR.

where

For each d dividing R,

-1 T ¢ —1
Dy(w)=0 =
I @ — DA 44+ - 4 (r/d=Dd)y
q)d‘(;;)h:o (I)d(t)q)(t) t=w
d
o {t —1 .Al”/d}:_cd.rqs(d),
ool P =y Bw)

where @ = ®/®; and C; depends only on d and R. For d € D not

dividing R,
—1 w =1

Res(® ==
GS( d7 d ) H (I)(w)

Dy(w)=0
i1s constant for r congruent to R modulo v, since d divides -y. Finally,

O R o — 1
Restg, —5 =<0 1] Fg
g(a)=0

where co is the leading coefficient of g; the expression can be rewritten as
C Res(g,t" — 1), where C depends only on R. Thus we can express b, in
the desired form (3.7) for all r congruent to R modulo ~.

For the case when M is a direct sum of cyclic modules R /(7))@ --- @
R1/(m,) we apply the above result to each summand and use the facts that
A=my...m, and b, is the product of the torsion numbers of the summands
to see that equation (3.7) still holds. Finally, if M is torsion free as an abelian
group, we use Theorem 3.6. [
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