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2. Augmented groups and torsion numbers

Torsion numbers for knots and links arise as a special case of a general

group-theoretical quantity described below. We see that many knot-theoretic

results remain valid in the broader context.

Let G be a finitely generated group and % : G Z any epimorphism. The

pair (G, x) is called an augmented group. Two augmented groups, (Gi,xi)
and (G2, X2) are equivalent if there exists an isomorphism <fi: G\ —>• G2 such

that Xi0(t> X\'
For any augmented group (G, x) >

the abelianization of ker x is a module

M over the ring 721 Z[t,t~l] of Laurent polynomials. Since 721 is

Noetherian, A4 is finitely generated, expressible as

(2.1) f,
where A is an N x M-matrix over 721, for some positive integers M,N. By
adjoining zero columns if needed, we can assume that M > N.

For any natural number r, we define Mr to be the quotient module

Mr M[{f - 1 )M

It is clear that Mr is finitely generated as an abelian group. Hence it
decomposes as

Mr 1?' © TMr
where TMr denotes the torsion subgroup of Mr. We define the rth torsion
number of (G, x) to be the order br of TMr. We say that br is pure if the

Betti number ßr vanishes.

Clearly br and ßr depend only on the module M, which in turn depends

only on the equivalence class of (G,x)- Although our motivation is group-
theoretic, we note that torsion and Betti numbers can be associated as above

to any finitely generated 1Z1 -module M. The difference is a matter only
of perspective, for it can be easily seen that any such M arises from an

augmented group (G,x)-
The elementary ideals Et of M form a sequence of invariants of (G, x) •

The ideal Et is generated by the (.N - î) x (N - i) minors of the matrix A of
(2.1). Since 7Z\ is a unique factorization domain, each Et is contained in a

unique minimal principal ideal; a generator is the ith characteristic polynomial
Ai(t) of (G, x), well defined up to multiplication by units in TZim We are
primarily interested in A0(0, which we abbreviate by A.

An important class of augmented groups arises in knot theory. For any
knot k in the 3-sphere S3 the fundamental group G 7Ti(S3 - k) is finitely
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presented and has infinite cyclic abelianization. Abelianization provides a

surjection G —y Z. (More precisely, there are two choices. The ambiguity,
which is harmless, can be eliminated by orienting the knot.) The module

M is isomorphic to the first homology group of the infinite cyclic cover of
S3 — k, and it has a presentation marix A that is square (that is, M N).
The quotient module Mr is isomorphic to the homology group H\(Mn Z)
of the r-fold cyclic cover Mr of S3 branched over k. The 0 th characteristic

polynomial À is commonly called the Alexander polynomial of k. (See [Li97]
or [Ro76].)

Definition 2.1. The cyclotomic order 7 7(A) is the least common
multiple of those positive integers d such that the dih cyclotomic polynomial
<D^ divides À. If no cyclotomic polynomial divides À then 7=1.

PROPOSITION 2.2 (cf. Theorem 4.2 of [Go72]). For any augmented group
(G, x) the sequence {ßr} of Betti numbers satisfies ßr-\--y ßr> where 7 is

the cyclotomic order of A.

Proof We adapt an argument of D. W. Sumners that appears in [Go72].
Since II CR, t~l] is a principal ideal domain, the tensor product A40zC

decomposes as a direct sum ®"=ln/(77), for some elements 77 G II such that

77 I 7ri+i, 1 < i < n. (For 0 < i < n, the product 717 • • • %n-i is the same as

Ai up to multiplication by units in II.) Likewise,

Mr<S>zCm e^n/fa, f -1).
Each factor 11/(77) can be expressed as 0;TI/((r — aj)e(aj)), where e(afi are

positive integers, aj ranging over the distinct roots of 77. Since

(t - a) if ar 1,

we see that

II otherwise,

ßr dime Mr 0z c ^ U,
i= 1

rthwhere lt is the number of distinct roots of 77 that are also rth roots of unity.
Hence ßr —- ßpf ,r) 5

and so ßr-^-^ — ß(*y— ßin* 1—I

In view of Proposition 2.2 it is natural to consider a subsequence of
torsion numbers bn such that ßn is constant. We prove that {brk} is a

division sequence in the sense that brk divides bn whenever 77 divides 7.
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LEMMA 2.3. Assume that f: Af -» AP is an epimorphism of finitely
generated modules over a PID. If Af and Af have the same rank, then <$>

restricts to an epimorphism f : TAf —> TAP of torsion submodules.

Proof. It is clear that f induces an epimorphism f: Af/TAf —> AP/TAP.
Since Af and AP have the same rank, f is an isomorphism. If y G TAP-

then there exists an element x G AT such that fix) y. If x £ TAf, then a

represents a nontrivial element of the kernel of f, a contradiction. Thus ,fi>

restricts to an epimorphism of torsion submodules.

PROPOSITION 2.4. Let (G,x) be an augmented group. If brjc is a

subsequence of torsion numbers for which the corresponding Betti numbers

ßrk are constant, then {brk} is a division sequence.

Proof. If r divides s, then clearly there exists a surjection f: A4S —» A4r.
Since ßr ßs, Lemma 2.3 implies that f induces a surjection of torsion
submodules, and consequently br divides bs.

Given an augmented group (G, x) such that A4 has a square matrix
presentation (2.1), the pure torsion numbers br can be computed by the

following formula familiar to knot theorists.

PROPOSITION 2.5. Assume that (G, x) is an augmented group such that
A4 has a square matrix presentation. If br is a pure torsion number, then it
is equal to the absolute value of

(2.2) n*o.
e=i

The quantity (2.2) is equal to the resultant Res(A,tr - 1). In general, if
fit) aotn-{ \-an-it+an and g(t) botm-\ \-bm-it+bm are polynomials
with integer coefficients and zeros au an and ßu ßm, respectively,
then the resultant of / and g is

Res(/, g) - (a%bn0) - ßj)»< f] - (-1)^
ij i j

Clearly, Res(/i/2,#) Res(/!,g)Res(/2)g) and Res(/,g) (-l)mnRes(5,/).
The resultant has an alternative definition as the determinant of a certain
matrix formed from the coefficients of / and g (cf. [La65]). In particular, the
resultant of integer polynomials is always an integer.
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In the case that G is a knot group, formula (2.2) was given by R. Fox
[Fo56]. A complete proof is contained in [We80]. The proof of Proposition
2.5 can be fashioned along similar lines. We will prove a more general result
in Section 3.

In [Le33] D. H. Lehmer investigated resultants Res(/, tr — 1), where

fit) £ Z[t]. As he observed, it follows from a theorem of Lagrange that the

sequence {Res(/, f — 1)} satisfies a linear homogeneous recurrence relation
in r with constant coefficients.

The general linear recurrence relation is easy to find. Assume that

fit) — codH+ Cd-\t + Cd has roots aj,..., a^. Form the polynomials

/o it)=t-l,
d

au) —fit) ny - ai),
Cr\ J- -Lc°

d-1

flit) P it-OLiOtj)

i>j= 1

fd.it) t - aia2 ad t - {-l)d—
co

It is not necessary to find the roots of / in order to determine /o,... Jd- The

coefficients of these polynomials are integers obtained rationally in terms of the

coefficients of /. Lehmer gives explicit formulas for d <6 ([Le33], p. 472-3).
If tm + A\tm~l + • • • + Am is the least common multiple of /0,... ,/j, then

Res(/, f— 1), which we abbreviate by R(/, r), satisfies the homogeneous linear

recurrence with characteristic polynomial pit) — ctm+CQ~lAitm~l-{ 1-Am ;

that is,

(2.3) r + m)+ c~xAxR(f, r- 1) + • • • + AmR(f, 0.

It is easy to see that the degree m of the characteristic equation (2.3) is

not greater than 2d. These facts were rediscovered by W. Stevens [StOO].

Stevens proved that when / is a reciprocal polynomial (that is, q c^-i for
/ 0,1,..., d) this degree m can be bounded from above by 3^/2.

We remark that the sign of Res(/, f — 1) is either constant or alternating.
For in the product

Res(/, f -1) Cq t|(a(r - 1),
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a pair of conjugate complex roots contributes a factor (o[ — 1 )(a[ — 1)

I a-" - 112, while the real factors have constant or alternating sign. It follows that

|Res(/, f — 1)| satisfies a linear recurrence of the same order as Res(/, f— 1) ;

in the alternating sign case, simply modify the characteristic polynomial by

changing the sign of alternate terms.

Example 2.6. The Alexander polynomial of the figure-eight knot (the knot

4i in tables) is A(t) » t2 — 3t + 1. Since neither root has modulus one, all of
the torsion numbers of k are pure. The polynomials / are fo(t) fz(t) t — 1

and fi (t) A(r). The least common multiple is t3 — 4t2 + At — 1, and hence

br satisfies: Z?r+3 - 4Z?r+2 + 4Z?r+i — br 0. Using the initial conditions
Z?0 0, 15 Z?2 — 5, other values can now be quickly computed.

The torsion numbers for the figure-eight knot produce some surprisingly
large prime factors. According to calculations done with Maple, &1301 is the

square of a prime with 285 digits.
Lehmer, who considered this example in [Le33], albeit for much smaller

values of r, was interested in producing new prime numbers. He observed that
the factors of R(f, r) satisfy a severe arithmetical constraint, and he proposed
that if R(/, r) grows with a relatively small exponential growth rate, then
these numbers will likely display large prime factors. Lehmer did not give

any proof of the assertion about prime factors, but rather used it heuristically.
A survey of Lehmer's efforts together with new results in these directions can
be found in [EEW00].

Definition 2.7. Assume that
d

fit) C()td + • • • + Cd-\t + Cd Co ~ Oii)

i= 1

is a polynomial with complex coefficients, c0 7^ 0. The Mahler measure of/
is

d

M(f) |c0| J|max{l,\at\}
i= 1

The empty product is assumed to be 1, so that the Mahler measure of a

nonzero constant polynomial f(t) c0 is |c0|. By convention, the Mahler
measure of the zero polynomial is zero.

Clearly, Mahler measure is multiplicative; that is, M(fg) M(f)M(g),
f°r f->9 £ CM - The following is proved in [GS91] and [Ri90]. We sketch the
argument.
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PROPOSITION 2.8. Let f be a polynomial with integer coefficients. The

subsequence R(f, rf) of nonvanishing resultants has exponential growth rate

M(f) ; that is,

lim |Res(/,f — l)|I/rt=M(/).
rj.—> oo

Sketch of proof Let f{t) co^ 4 + Q-i* -f q. Assume that cq 7^ 0

and that cui,..., otd (not necessarily distinct) are the roots of /. Then

|Res(/,fr- l)|1/r IcoiniA" 1 l'/r-
i — 1

The condition that the resultant does not vanish is equivalent to the statement
that no root is an rth root of unity. Consider the subsequence of natural

integers r for which this is the case. Note that if |az-| < 1, then the factor
I of — 1|1/V converges to 1 as r goes to infinity. On the other hand, if |a/| > 1,

then for sufficiently large r we have

\\«X < 1 < \a" - 1| < |a/|r + 1 < 2|a/|r.

Taking rth roots we see that \a\ — l|1//r converges to \a>i\.

When some root lies on the unit circle the nonzero values of | a\ — 11

can fluctuate wildly. In this case the analysis is more subtle. Gonzalez-Acuna
and Short use results of A. Baker [Ba77] and A.O. Gelfond [Ge35] to obtain

estimates. In [GS91] it is shown that if |o£| 1, then

Cexp{-(logr)6} < I a- - 1| < 2,

where C is a positive constant that depends only on /. As in the case that

\ai\ < 1 we have that \a\ — l|^r converges to 1.

The conclusion of Proposition 2.8 follows.

The following is immediate from Propositions 2.8 and 2.5.

COROLLARY 2.9. Assume that the finitely generated 1Z\ -module M has a

square matrix presentation. Then the subsequence of {br} consisting of pure
torsion numbers has exponential growth rate equal to M(A).

We can extend the conclusion of Proposition 2.8 to the entire sequence of
resultants by using results from the theory of algebraic dynamical systems.

Only the essential elements of the theory are sketched below. Readers

unfamiliar with dynamical systems might refer to [EW99].
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In brief, to a finitely generated 1Z\ -module we associate a compact space

and a homeomorphism a from the space to itself. The fixed points of ar form

a closed subspace consisting of exactly br connected components. Topological

techniques are available to compute the exponential growth rate of br, and it
coincides with M(A).

Theorem 2.10. Assume that the finitely generated 1Z\ -module M either

(i) has a square presentation matrix; or (ii) is torsion-free as an abelian

group. Then the sequence {br} of torsion numbers has exponential growth

rate equal to M(A).

Proof Let MA denote the Pontryagin dual Hom(jV4,T); that is, the

topological group of homomorphisms p from M to the additive circle group
T R/Z. Here M has the discrete topology, and MA the compact-open

topology. Multiplication by t in A4 induces a homeomorhism a of MA
defined by <j(p){a) pita), for any p G MA and all a £ M. The dual of

Mr — Mj(tr - 1 )M is the subspace Fix(crr) {p £ MA | arp p}, the set

of points of MA with period r.
Since Mr — ®TMr* the dual MA is homeomorphic to T^r xTMr.

This follows from two facts : ZA is isomorphic to T ; and AA is isomorphic
to A for any finite abelian group. Hence the number of connected components
of MA is equal to the cardinality of TMr, which by definition is the torsion
number br. Each component is a torus of dimension ßr, a beautiful fact but

one that we will not use here.

The number of connected components of MA is the same as the number

Nr of connected components of Fix(crr). Theorem 21.1(3) of [Sc95] states

that the exponential growth rate of Nr is equal to the topological entropy
of a. (The proof of this deep result uses a definition of topological entropy
in terms of separating sets. For an elementary discussion of the theorem see

[EW99].)

Further, if M has a presentation (2.1) with square matrix A, then the

topological entropy of a is equal to M(A). (See Example 18.7(1) of [Sc95].)
Thus if the hypothesis (i) is satisfied, then we are done.

If M is torsion-free as an abelian group, then again the topological entropy
of a is equal to M(A) by Lemma 17.6 of [Sc95].

The hypotheses of Theorem 2.10 cannot be dropped, as the following
example illustrates.
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Example 2.11. Consider the augmented group (G, %) such that

G (x, a I x~2a2xa~6xa2, x~3axa~4xa4xa~l),

and x: G -A Z maps 1 and 0. A straightforward calculation shows

that M =1Z\/(2/, (7— 1)/), where f(t) — t2—3t+1. The Alexander polynomial
A is gcd(2/, (t— 1)/) /, and it has Mahler measure greater than 1. However,
the topological entropy of the homeomorphism a is zero by Corollary 18.5 |

of [Sc95]. As in the proof of the theorem above, it follows that the torsion J

numbers br have trivial exponential growth rate; that is, limsup^^ blJr — 1. |

3. Extended Fox formula and recurrence

Let (G, x) be an augmented group, and A the N x M presentation matrix
for the 7^i-module M as in (2.1). For any positive integer r we can obtain a

presentation matrix for the finitely generated abelian group Mr by replacing
each entry q(t) of A by the r x r block q(Cr), where Cr is the companion
matrix of f — 1,

Cr

/0 1 0

0 0 1

0 0 0

\l 0 0

°\
0

1

0 /

We call the resulting rN x rM matrix A(Cr). The proof is not difficult. The

torsion number br is equal to the absolute value of the product of the nonzero

elementary divisors of A(Cr).
Assume first that M is a cyclic module. Then A is the lxl matrix

(A(0), and the r x r matrix (A(Cr)) presents Mr. The Betti number ßr
is the number of zeros of A that are rth roots of unity. When it vanishes

the matrix (A(Cr)) is nonsingular. Then all elementary divisors of the matrix

are nonzero, and their product is equal (up to sign) to the product of the

eigenvalues, which is the determinant. Fox's formula (Proposition 2.5) follows

by choosing a basis for Cr that diagonalizes the companion matrix Cr ; we
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