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TORSION NUMBERS OF AUGMENTED GROUPS 319
2. AUGMENTED GROUPS AND TORSION NUMBERS

Torsion numbers for knots and links arise as a special case of a general
group-theoretical quantity described below. We see that many knot-theoretic
results remain valid in the broader context.

Let G be a finitely generated group and x: G — Z any epimorphism. The
pair (G,y) is called an augmented group. Two augmented groups, (G, Xx1)
and (Gs, x2), are equivalent if there exists an isomorphism ¢: G; — G such
that x, 0 ¢ = x1.

For any augmented group (G, x), the abelianization of ker ) is a module
M over the ring R; = Z[t,t~!] of Laurent polynomials. Since R; is
Noetherian, M is finitely generated, expressible as

2.1 M= RY JARY,

where A is an N x M-matrix over R, for some positive integers M,N. By
adjoining zero columns if needed, we can assume that M > N.
For any natural number r, we define M, to be the quotient module

M, = M/ — M.

It is clear that M, is finitely generated as an abelian group. Hence it
decomposes as
M, =2Pr & TM,,

where TM, denotes the torsion subgroup of M,. We define the r? torsion
number of (G, x) to be the order b, of TM,. We say that b, is pure if the
Betti number [, vanishes.

Clearly b, and (3, depend only on the module M, which in turn depends
only on the equivalence class of (G, x). Although our motivation is group-
theoretic, we note that torsion and Betti numbers can be associated as above
to any finitely generated R;-module M. The difference is a matter only
of perspective, for it can be easily seen that any such M arises from an
augmented group (G, x).

The elementary ideals E; of M form a sequence of invariants of (G, ).
The ideal E; is generated by the (N — i) X (N — i) minors of the matrix A of
(2.1). Since R; 1s a unique factorization domain, each E; is contained in a
unique minimal principal ideal; a generator is the i characteristic polynomial
Ai(t) of (G,x), well defined up to multiplication by units in R;. We are
primarily interested in Ag(f), which we abbreviate by A.

An important class of augmented groups arises in knot theory. For any
knot k in the 3-sphere S° the fundamental group G = 7,(S® — k) is finitely
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presented and has infinite cyclic abelianization. Abelianization provides a
surjection x: G — Z. (More precisely, there are two choices. The ambiguity,
which is harmless, can be eliminated by orienting the knot.) The module
M 1s i1somorphic to the first homology group of the infinite cyclic cover of
$® — k, and it has a presentation marix .A that is square (that is, M = N).
The quotient module M, is isomorphic to the homology group H{(M,,Z)
of the r-fold cyclic cover M, of S® branched over k. The 0™ characteristic
polynomial A is commonly called the Alexander polynomial of k. (See [Li97]
or [Ro76].)

DEFINITION 2.1. The cyclotomic order v = ~(A) is the least common
multiple of those positive integers d such that the d™ cyclotomic polynomial
@, divides A. If no cyclotomic polynomial divides A then v =1.

PROPOSITION 2.2 (cf. Theorem 4.2 of [Go72]). For any augmented group
(G, x) the sequence {B,} of Betti numbers satisfies Br+ = (Br, where vy is
the cyclotomic order of A.

Proof. We adapt an argument of D. W. Sumners that appears in [Go72].

Since IT = C[¢t,¢7'] is a principal ideal domain, the tensor product M ®zC
decomposes as a direct sum @?_,IT/(m;), for some elements m; € I1 such that
i | mir1, 1 <i<m. (For 0 <i< n, the product 7 ---7,_; is the same as
A; up to multiplication by units in II.) Likewise,

M, ®z C =& I/(m, ¢ —1).

Each factor I1/(m;) can be expressed as @;11/((t — a;)“*)), where e(q;) are
positive integers, o; ranging over the distinct roots of ;. Since
(t— o) if " =1,

I1 otherwise,

(t— ), —1)= {

we see that ~
B, = dimc M, ®2 C =) I,
i=1
where I; is the number of distinct roots of ; that are also r™ roots of unity.
Hence 3, = /8(’)’,7‘)7 and so /Br—i—'y - /8(7,r+'y) = ﬂ(%r) = ﬁr. L]

In view of Proposition 2.2 it is natural to consider a subsequence of
torsion numbers b, such that (, is constant. We prove that {b,} is a
division sequence in the sense that b,, divides b, whenever r; divides 7;.
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LEMMA 2.3. Assume that ¢: N — N’ is an epimorphism of finitely
generated modules over a PID. If N' and N’ have the same rank, then ¢
restricts to an epimorphism ¢: TN — TN’ of torsion submodules.

Proof. 1t is clear that ¢ induces an epimorphism ¢: N /TN — N’ /TN".
Since N and A’ have the same rank, ¢ is an isomorphism. If y € TN,
then there exists an element x € N such that ¢(x) = y. If x ¢ TN, then x
represents a nontrivial element of the kernel of 5, a contradiction. Thus ¢
restricts to an epimorphism of torsion submodules. [

PROPOSITION 2.4. Let (G,x) be an augmented group. If b, is a
subsequence of torsion numbers for which the corresponding Betti numbers
By, are constant, then {b, } is a division sequence.

Proof. If r divides s, then clearly there exists a surjection ¢: My — M,.
Since B, = [;, Lemma 2.3 implies that ¢ induces a surjection of torsion
submodules, and consequently b, divides b,. [

Given an augmented group (G,x) such that M has a square matrix
presentation (2.1), the pure torsion numbers b, can be computed by the
following formula familiar to knot theorists.

PROPOSITION 2.5. Assume that (G,x) is an augmented group such that
M has a square matrix presentation. If b, is a pure torsion number, then it
is equal to the absolute value of

2:2) 1] 2©.
¢r=1

The quantity (2.2) is equal to the resultant Res(A,7” — 1). In general, if
f(®) =apt"+---+a,_1t+a, and g(t) = byt™+- - -+b,,_t+b,, are polynomials
with integer coefficients and zeros «y,...,qa, and Bi,..., B, respectively,
then the resultant of f and ¢ is

Res(f,9) = (@yby) | [(ai = ) = aff [ [ 9te) = 0y w3 [T 15 -
i i J

Clearly, Res(fif2,9) = Res(fi, g)Res(f2,9) and Res(f,g) = (—1)™ Res(g, f).
The resultant has an alternative definition as the determinant of a certain

matrix formed from the coefficients of f and g (cf. [La65]). In particular, the
resultant of integer polynomials is always an integer.
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In the case that G is a knot group, formula (2.2) was given by R. Fox
[Fo56]. A complete proof is contained in [We80]. The proof of Proposition
2.5 can be fashioned along similar lines. We will prove a more general result
in Section 3.

In [Le33] D. H. Lehmer investigated resultants Res(f,#” — 1), where
f(t) € Z[t]. As he observed, it follows from a theorem of Lagrange that the
sequence {Res(f,7" — 1)} satisfies a linear homogeneous recurrence relation
in r with constant coefficients.

The general linear recurrence relation is easy to find. Assume that
f(®) = cot? + -+ + c4_1t + ¢4 has roots «i,...,0y. Form the polynomials

fO(t) =r—1 )
1 d

AW =—=fo=]]t- 0,
€0 P

d—1
o= 1] ¢ - ay,

i>j=1

fi) =t—ajan--ag=1—(~1¢2.

€o
It is not necessary to find the roots of f in order to determine fy,...,f;. The
coefficients of these polynomials are integers obtained rationally in terms of the
coefficients of f. Lehmer gives explicit formulas for d < 6 ([Le33], p.472-3).
If "+ A" '+ ...+ A, is the least common multiple of fy,...,fs, then
Res(f,t"—1), which we abbreviate by R(f,r), satisfies the homogeneous linear
recurrence with characteristic polynomial p(f) = cjt"+cy A=l 1A
that 1is,

(2.3) CIR(f,r+m)+ AR, r+m— 1) 4+ AuR(f, 1) =0,

It is easy to see that the degree m of the characteristic equation (2.3) is
not greater than 2¢. These facts were rediscovered by W. Stevens [St00].
Stevens proved that when f is a reciprocal polynomial (that is, ¢; = c4—; for
i=0,1,...,d) this degree m can be bounded from above by 3%/2.

We remark that the sign of Res(f,t — 1) is either constant or alternating.
For in the product

Res(f,# =) =cf [ Jef = 1),
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a pair of conjugate complex roots contributes a factor (of — 1)(@; — 1) =
lal — 1|2 , while the real factors have constant or alternating sign. It follows that
IRes(f,# — 1)| satisfies a linear recurrence of the same order as Res(f,7 —1);
in the alternating sign case, simply modify the characteristic polynomial by
changing the sign of alternate terms.

EXAMPLE 2.6. The Alexander polynomial of the figure-eight knot (the knot
4, in tables) is A(f) = * — 3¢+ 1. Since neither root has modulus one, all of
the torsion numbers of k are pure. The polynomials f; are fo(?) = fo(1) = t—1
and fi(f) = A(r). The least common multiple is #* — 4> + 4¢ — 1, and hence
b, satisfies: b,13 — 4b,1y + 4b,41 — b, = 0. Using the initial conditions
by = 0,b; = 1,by, = 5, other values can now be quickly computed.

The torsion numbers for the figure-eight knot produce some surprisingly
large prime factors. According to calculations done with Maple, bj36; 1s the
square of a prime with 285 digits.

Lehmer, who considered this example in [Le33], albeit for much smaller
values of r, was interested in producing new prime numbers. He observed that
the factors of R(f,r) satisfy a severe arithmetical constraint, and he proposed
that if R(f,r) grows with a relatively small exponential growth rate, then
these numbers will likely display large prime factors. Lehmer did not give
any proof of the assertion about prime factors, but rather used it heuristically.

A survey of Lehmer’s efforts together with new results in these directions can
be found in [EEWO0O0].

DEFINITION 2.7. Assume that
d

fO=cot"+ - +cs1t+cqg=co H(t — ;)
i=1
is a polynomial with complex coefficients, co # 0. The Mahler measure of f
18

d
M(f) = |co Hmax{l, o]}

The empty product is assumed to be 1, so that the Mahler measure of a
nonzero constant polynomial f(f) = ¢¢ is |co|. By convention, the Mahler
measure of the zero polynomial is zero.

Clearly, Mahler measure is multiplicative; that is, M(fg) = M( HIM(g),

for f, g € C[t]. The following is proved in [GS91] and [Ri90]. We sketch the
argument.
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PROPOSITION 2.8. Let f be a polynomial with integer coefficients. The
subsequence R(f,r;) of nonvanishing resultants has exponential growth rate
M(f); that is,

lim [Res(f, 7" — DY = M(f).
14 o]

Sketch of proof. Let f(t) = cot® + -+ c4_1t + c4. Assume that ¢y # 0
and that «ay,...,a4 (not necessarily distinct) are the roots of f. Then

d
[Res(f, 7 — D" = |eo| [l — 1]"".
i=1

The condition that the resultant does not vanish is equivalent to the statement
that no root «; is an r™® root of unity. Consider the subsequence of natural
integers r for which this is the case. Note that if |o;| < 1, then the factor
lal — lll/ " converges to 1 as r goes to infinity. On the other hand, if |a;| > 1,

then for sufficiently large r we have
1 r r v r r
Sl <leil” =1 <fof =1 <l +1 < 2auf".

Taking r™ roots we see that |af — lll/ " converges to |ay].

When some root «; lies on the unit circle the nonzero values of |a) — 1]
can fluctuate wildly. In this case the analysis is more subtle. Gonzalez-Acuna
and Short use results of A. Baker [Ba77] and A.O. Gelfond [Ge35] to obtain
estimates. In [GS91] it is shown that if |af| # 1, then

Cexp{—(logr°} < |af — 1| <2,

where C is a positive constant that depends only on f. As in the case that
lai| < 1 we have that |of — lll/r converges to 1.
The conclusion of Proposition 2.8 follows. [

The following is immediate from Propositions 2.8 and 2.5.

COROLLARY 2.9. Assume that the finitely generated R-module M has a
square matrix presentation. Then the subsequence of {b,} consisting of pure
torsion numbers has exponential growth rate equal to M(A).

We can extend the conclusion of Proposition 2.8 to the entire sequence of
resultants by using results from the theory of algebraic dynamical systems.
Only the essential elements of the theory are sketched below. Readers
unfamiliar with dynamical systems might refer to [EW99].
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In brief, to a finitely generated R-module we associate a compact space
and a homeomorphism o from the space to itself. The fixed points of o” form
a closed subspace consisting of exactly b, connected components. Topological
techniques are available to compute the exponential growth rate of b,, and it
coincides with M(A).

THEOREM 2.10. Assume that the finitely generated Ri-module M either
(i) has a square presentation matrix; or (ii) is torsion-free as an abelian
group. Then the sequence {b,} of torsion numbers has exponential growth
rate equal to M(A).

Proof. Let M” denote the Pontryagin dual Hom(M,T); that is, the
topological group of homomorphisms p from M to the additive circle group
T = R/Z. Here M has the discrete topology, and M” the compact-open
topology. Multiplication by ¢ in M induces a homeomorhism o of M”"
defined by o(p)(a) = p(ta), for any p € M” and all a € M. The dual of
M, = M/(t"—1)M is the subspace Fix(c") = {p € M" | o”"p = p}, the set
of points of M” with period r.

Since M, =2’ @ TM,, the dual M” is homeomorphic to TP x TM,.
This follows from two facts: Z” is isomorphic to T ; and A" is isomorphic
to A for any finite abelian group. Hence the number of connected components
of M/ is equal to the cardinality of 7.M,, which by definition is the torsion
number b,. Each component is a torus of dimension [3,, a beautiful fact but
one that we will not use here.

The number of connected components of M’ is the same as the number
N, of connected components of Fix(c"). Theorem 21.1(3) of [Sc95] states
that the exponential growth rate of N, is equal to the topological entropy
of o. (The proof of this deep result uses a definition of topological entropy
in terms of separating sets. For an elementary discussion of the theorem see
[EW99].)

Further, if M has a presentation (2.1) with square matrix .4, then the
topological entropy of o is equal to M(A). (See Example 18.7 (1) of [Sc95].)
Thus 1f the hypothesis (i) is satisfied, then we are done.

If M is torsion-free as an abelian group, then again the topological entropy
of o is equal to M(A) by Lemma 17.6 of [Sc95]. [

The hypotheses of Theorem 2.10 cannot be dropped, as the following
example illustrates.
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EXAMPLE 2.11. Consider the augmented group (G, x) such that

G = (x,a | x *a*xa~%xa*, x>axa"*xa*xa~

2. —6. 2 3 4. 4 1> ’

and x: G —+7Z maps x— 1 and a > 0. A straightforward calculation shows
that M = R, /Q2f, (t—1)f), where f(f) = t*—3t+1. The Alexander polynomial
A 18 ged(2f, (t—1)f) = f, and it has Mahler measure greater than 1. However,
the topological entropy of the homeomorphism o is zero by Corollary 18.5
of [Sc95]. As in the proof of the theorem above, it follows that the torsion

numbers b, have trivial exponential growth rate; that is, limsup,_, bl/ "=1.

3. EXTENDED FOX FORMULA AND RECURRENCE

Let (G, x) be an augmented group, and A the N x M presentation matrix
for the R{-module M as in (2.1). For any positive integer r we can obtain a
presentation matrix for the finitely generated abelian group M, by replacing
each entry g(r) of A by the r x r block ¢(C,), where C, is the companion
matrix of ¢ — 1,

O 1 O 0
0 0 1 0
¢ = : z
0 0 O 1
1 0 O 0

We call the resulting N x rM matrix A(C,). The proof is not difficult. The
torsion number b, is equal to the absolute value of the product of the nonzero
elementary divisors of A(C,).

Assume first that M is a cyclic module. Then A is the 1 x 1 matrix
(A(?)), and the r x r matrix (A(C,)) presents M,. The Betti number S,
is the number of zeros of A that are r™ roots of unity. When it vanishes
the matrix (A(C,)) is nonsingular. Then all elementary divisors of the matrix
are nonzero, and their product is equal (up to sign) to the product of the
eigenvalues, which is the determinant. Fox’s formula (Proposition 2.5) follows
by choosing a basis for C” that diagonalizes the companion matrix C,; we
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