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TORSION NUMBERS OF AUGMENTED GROUPS
WITH APPLICATIONS TO KNOTS AND LINKS

by Daniel S. SILVER and Susan G. WILLIAMS ")

Dedicated to the memory of Arnold E. Ross

ABSTRACT. Torsion and Betti numbers for knots are special cases of more general
invariants b, and [,, respectively, associated to a finitely generated group G and
epimorphism x: G — Z. The sequence of Betti numbers is always periodic; under mild
hypotheses about (G, x), the sequence b, satisfies a linear homogeneous recurrence
relation with constant coefficients. Generally, b, exhibits exponential growth rate.
However, again under mild hypotheses, the p-part of b, has trivial growth for any
prime p. Applications to branched cover homology for knots and links are presented.

1. INTRODUCTION

A knot is a simple closed curve in the 3-sphere S°. Knots are equivalent
if there is an orientation-preserving homeomorphism of $° that carries one
into the other. Equivalent knots are regarded as the same. An invariant is
a well-defined quantity that depends only on a knot equivalence class. Two
knots for which some invariant differs are necessarily distinct.

Associated to any knot k and natural number r there is a compact, oriented
3-manifold M,, the r-fold cyclic cover of S branched over k. A precise
definition can be found in [Li97] or [Ro76], for example. Topological invariants
of M, are invariants of k. Two such invariants, the first Betti number 3, and
the order b, of the torsion subgroup of H;(M,;Z), were first considered by
J. Alexander and G. Briggs [Al28], [AB27] and by O. Zariski [Za32]. The
continuing interest in these invariants is witnessed by numerous papers (e.g.,
[Go72], [Me80], [We80], [Ri90] and [GS91]). We call b, the r™ torsion
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number of k. We say that b, is pure if the corresponding Betti number g,
vanishes (equivalently, H;(M,;Z) is a pure torsion group).

Betti numbers are known to be periodic in r, and they are relatively easy to
compute (see Proposition 2.2). A useful formula for pure torsion numbers was
given by R. Fox in [Fo56]. Although the proof given by Fox was insufficient,
a complete argument was given by C. Weber [We80]. Weber observed that
the problem of computing non-pure torsion numbers is “
difficile”.

Torsion and Betti numbers for knots are a special case of a more general,
algebraic construction that depends only on an augmented group, consisting of
a finitely generated group G and a surjection x: G — Z. We define torsion
and Betti numbers in this general context. For a large class of augmented
groups, including those that correspond to knots, we provide a formula for all
torsion numbers, generalizing the formula of Fox. We prove that the sequence
of torsion numbers satisfies a linear recurrence relation.

Torsion numbers tend to grow quickly as their index r becomes large.
F. Gonzélez-Acufia and H. Short [GS91] and independently R. Riley [Ri90]
proved that the sequence of pure torsion numbers of any knot k£ has exponential
growth rate equal to the Mahler measure of the Alexander polynomial of k.
We improved upon this in [SW00] by showing that the entire sequence b,
grows at this rate and generalizing the result in a natural way for links. The
proofs in [SWO0O0] use a deep result about algebraic dynamical systems due to
D. Lind, K. Schmidt and T. Ward (Theorem 21.1 of [Sc95]). Here we extend
such results for torsion numbers b, associated to many augmented groups.
In contrast, we prove under suitable hypotheses that for any prime number p
the p-component of b, (i.e., the largest power of p that divides b,) grows
subexponentially. The proof relies on a p-adic version of Jensen’s formula,
proven by G.R. Everest and B.Ni Fhlathuin [EF96], [Ev99]. As a corollary
we strengthen a theorem of C. Gordon [Go72] by proving that for any knot
the sequence of torsion numbers either is periodic or else displays infinitely
many prime numbers in the factorization of its terms.

In the final section we apply our techniques to the problem of computing
homology groups of branched cyclic covering spaces associated to knots and
links.

We are grateful to Dan Flath, Adam Sikora, Doug Lind and Hamish
Short for useful discussions. The University of Maryland, the Centre de
Mathématiques et Informatique in Marseille, and Institut de Mathématiques
de Luminy provided kind hospitality during the period of this work. Finally,
we thank the referees for helpful comments and suggestions.

... une question plus
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2. AUGMENTED GROUPS AND TORSION NUMBERS

Torsion numbers for knots and links arise as a special case of a general
group-theoretical quantity described below. We see that many knot-theoretic
results remain valid in the broader context.

Let G be a finitely generated group and x: G — Z any epimorphism. The
pair (G,y) is called an augmented group. Two augmented groups, (G, Xx1)
and (Gs, x2), are equivalent if there exists an isomorphism ¢: G; — G such
that x, 0 ¢ = x1.

For any augmented group (G, x), the abelianization of ker ) is a module
M over the ring R; = Z[t,t~!] of Laurent polynomials. Since R; is
Noetherian, M is finitely generated, expressible as

2.1 M= RY JARY,

where A is an N x M-matrix over R, for some positive integers M,N. By
adjoining zero columns if needed, we can assume that M > N.
For any natural number r, we define M, to be the quotient module

M, = M/ — M.

It is clear that M, is finitely generated as an abelian group. Hence it
decomposes as
M, =2Pr & TM,,

where TM, denotes the torsion subgroup of M,. We define the r? torsion
number of (G, x) to be the order b, of TM,. We say that b, is pure if the
Betti number [, vanishes.

Clearly b, and (3, depend only on the module M, which in turn depends
only on the equivalence class of (G, x). Although our motivation is group-
theoretic, we note that torsion and Betti numbers can be associated as above
to any finitely generated R;-module M. The difference is a matter only
of perspective, for it can be easily seen that any such M arises from an
augmented group (G, x).

The elementary ideals E; of M form a sequence of invariants of (G, ).
The ideal E; is generated by the (N — i) X (N — i) minors of the matrix A of
(2.1). Since R; 1s a unique factorization domain, each E; is contained in a
unique minimal principal ideal; a generator is the i characteristic polynomial
Ai(t) of (G,x), well defined up to multiplication by units in R;. We are
primarily interested in Ag(f), which we abbreviate by A.

An important class of augmented groups arises in knot theory. For any
knot k in the 3-sphere S° the fundamental group G = 7,(S® — k) is finitely
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presented and has infinite cyclic abelianization. Abelianization provides a
surjection x: G — Z. (More precisely, there are two choices. The ambiguity,
which is harmless, can be eliminated by orienting the knot.) The module
M 1s i1somorphic to the first homology group of the infinite cyclic cover of
$® — k, and it has a presentation marix .A that is square (that is, M = N).
The quotient module M, is isomorphic to the homology group H{(M,,Z)
of the r-fold cyclic cover M, of S® branched over k. The 0™ characteristic
polynomial A is commonly called the Alexander polynomial of k. (See [Li97]
or [Ro76].)

DEFINITION 2.1. The cyclotomic order v = ~(A) is the least common
multiple of those positive integers d such that the d™ cyclotomic polynomial
@, divides A. If no cyclotomic polynomial divides A then v =1.

PROPOSITION 2.2 (cf. Theorem 4.2 of [Go72]). For any augmented group
(G, x) the sequence {B,} of Betti numbers satisfies Br+ = (Br, where vy is
the cyclotomic order of A.

Proof. We adapt an argument of D. W. Sumners that appears in [Go72].

Since IT = C[¢t,¢7'] is a principal ideal domain, the tensor product M ®zC
decomposes as a direct sum @?_,IT/(m;), for some elements m; € I1 such that
i | mir1, 1 <i<m. (For 0 <i< n, the product 7 ---7,_; is the same as
A; up to multiplication by units in II.) Likewise,

M, ®z C =& I/(m, ¢ —1).

Each factor I1/(m;) can be expressed as @;11/((t — a;)“*)), where e(q;) are
positive integers, o; ranging over the distinct roots of ;. Since
(t— o) if " =1,

I1 otherwise,

(t— ), —1)= {

we see that ~
B, = dimc M, ®2 C =) I,
i=1
where I; is the number of distinct roots of ; that are also r™ roots of unity.
Hence 3, = /8(’)’,7‘)7 and so /Br—i—'y - /8(7,r+'y) = ﬂ(%r) = ﬁr. L]

In view of Proposition 2.2 it is natural to consider a subsequence of
torsion numbers b, such that (, is constant. We prove that {b,} is a
division sequence in the sense that b,, divides b, whenever r; divides 7;.
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LEMMA 2.3. Assume that ¢: N — N’ is an epimorphism of finitely
generated modules over a PID. If N' and N’ have the same rank, then ¢
restricts to an epimorphism ¢: TN — TN’ of torsion submodules.

Proof. 1t is clear that ¢ induces an epimorphism ¢: N /TN — N’ /TN".
Since N and A’ have the same rank, ¢ is an isomorphism. If y € TN,
then there exists an element x € N such that ¢(x) = y. If x ¢ TN, then x
represents a nontrivial element of the kernel of 5, a contradiction. Thus ¢
restricts to an epimorphism of torsion submodules. [

PROPOSITION 2.4. Let (G,x) be an augmented group. If b, is a
subsequence of torsion numbers for which the corresponding Betti numbers
By, are constant, then {b, } is a division sequence.

Proof. If r divides s, then clearly there exists a surjection ¢: My — M,.
Since B, = [;, Lemma 2.3 implies that ¢ induces a surjection of torsion
submodules, and consequently b, divides b,. [

Given an augmented group (G,x) such that M has a square matrix
presentation (2.1), the pure torsion numbers b, can be computed by the
following formula familiar to knot theorists.

PROPOSITION 2.5. Assume that (G,x) is an augmented group such that
M has a square matrix presentation. If b, is a pure torsion number, then it
is equal to the absolute value of

2:2) 1] 2©.
¢r=1

The quantity (2.2) is equal to the resultant Res(A,7” — 1). In general, if
f(®) =apt"+---+a,_1t+a, and g(t) = byt™+- - -+b,,_t+b,, are polynomials
with integer coefficients and zeros «y,...,qa, and Bi,..., B, respectively,
then the resultant of f and ¢ is

Res(f,9) = (@yby) | [(ai = ) = aff [ [ 9te) = 0y w3 [T 15 -
i i J

Clearly, Res(fif2,9) = Res(fi, g)Res(f2,9) and Res(f,g) = (—1)™ Res(g, f).
The resultant has an alternative definition as the determinant of a certain

matrix formed from the coefficients of f and g (cf. [La65]). In particular, the
resultant of integer polynomials is always an integer.
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In the case that G is a knot group, formula (2.2) was given by R. Fox
[Fo56]. A complete proof is contained in [We80]. The proof of Proposition
2.5 can be fashioned along similar lines. We will prove a more general result
in Section 3.

In [Le33] D. H. Lehmer investigated resultants Res(f,#” — 1), where
f(t) € Z[t]. As he observed, it follows from a theorem of Lagrange that the
sequence {Res(f,7" — 1)} satisfies a linear homogeneous recurrence relation
in r with constant coefficients.

The general linear recurrence relation is easy to find. Assume that
f(®) = cot? + -+ + c4_1t + ¢4 has roots «i,...,0y. Form the polynomials

fO(t) =r—1 )
1 d

AW =—=fo=]]t- 0,
€0 P

d—1
o= 1] ¢ - ay,

i>j=1

fi) =t—ajan--ag=1—(~1¢2.

€o
It is not necessary to find the roots of f in order to determine fy,...,f;. The
coefficients of these polynomials are integers obtained rationally in terms of the
coefficients of f. Lehmer gives explicit formulas for d < 6 ([Le33], p.472-3).
If "+ A" '+ ...+ A, is the least common multiple of fy,...,fs, then
Res(f,t"—1), which we abbreviate by R(f,r), satisfies the homogeneous linear
recurrence with characteristic polynomial p(f) = cjt"+cy A=l 1A
that 1is,

(2.3) CIR(f,r+m)+ AR, r+m— 1) 4+ AuR(f, 1) =0,

It is easy to see that the degree m of the characteristic equation (2.3) is
not greater than 2¢. These facts were rediscovered by W. Stevens [St00].
Stevens proved that when f is a reciprocal polynomial (that is, ¢; = c4—; for
i=0,1,...,d) this degree m can be bounded from above by 3%/2.

We remark that the sign of Res(f,t — 1) is either constant or alternating.
For in the product

Res(f,# =) =cf [ Jef = 1),
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a pair of conjugate complex roots contributes a factor (of — 1)(@; — 1) =
lal — 1|2 , while the real factors have constant or alternating sign. It follows that
IRes(f,# — 1)| satisfies a linear recurrence of the same order as Res(f,7 —1);
in the alternating sign case, simply modify the characteristic polynomial by
changing the sign of alternate terms.

EXAMPLE 2.6. The Alexander polynomial of the figure-eight knot (the knot
4, in tables) is A(f) = * — 3¢+ 1. Since neither root has modulus one, all of
the torsion numbers of k are pure. The polynomials f; are fo(?) = fo(1) = t—1
and fi(f) = A(r). The least common multiple is #* — 4> + 4¢ — 1, and hence
b, satisfies: b,13 — 4b,1y + 4b,41 — b, = 0. Using the initial conditions
by = 0,b; = 1,by, = 5, other values can now be quickly computed.

The torsion numbers for the figure-eight knot produce some surprisingly
large prime factors. According to calculations done with Maple, bj36; 1s the
square of a prime with 285 digits.

Lehmer, who considered this example in [Le33], albeit for much smaller
values of r, was interested in producing new prime numbers. He observed that
the factors of R(f,r) satisfy a severe arithmetical constraint, and he proposed
that if R(f,r) grows with a relatively small exponential growth rate, then
these numbers will likely display large prime factors. Lehmer did not give
any proof of the assertion about prime factors, but rather used it heuristically.

A survey of Lehmer’s efforts together with new results in these directions can
be found in [EEWO0O0].

DEFINITION 2.7. Assume that
d

fO=cot"+ - +cs1t+cqg=co H(t — ;)
i=1
is a polynomial with complex coefficients, co # 0. The Mahler measure of f
18

d
M(f) = |co Hmax{l, o]}

The empty product is assumed to be 1, so that the Mahler measure of a
nonzero constant polynomial f(f) = ¢¢ is |co|. By convention, the Mahler
measure of the zero polynomial is zero.

Clearly, Mahler measure is multiplicative; that is, M(fg) = M( HIM(g),

for f, g € C[t]. The following is proved in [GS91] and [Ri90]. We sketch the
argument.
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PROPOSITION 2.8. Let f be a polynomial with integer coefficients. The
subsequence R(f,r;) of nonvanishing resultants has exponential growth rate
M(f); that is,

lim [Res(f, 7" — DY = M(f).
14 o]

Sketch of proof. Let f(t) = cot® + -+ c4_1t + c4. Assume that ¢y # 0
and that «ay,...,a4 (not necessarily distinct) are the roots of f. Then

d
[Res(f, 7 — D" = |eo| [l — 1]"".
i=1

The condition that the resultant does not vanish is equivalent to the statement
that no root «; is an r™® root of unity. Consider the subsequence of natural
integers r for which this is the case. Note that if |o;| < 1, then the factor
lal — lll/ " converges to 1 as r goes to infinity. On the other hand, if |a;| > 1,

then for sufficiently large r we have
1 r r v r r
Sl <leil” =1 <fof =1 <l +1 < 2auf".

Taking r™ roots we see that |af — lll/ " converges to |ay].

When some root «; lies on the unit circle the nonzero values of |a) — 1]
can fluctuate wildly. In this case the analysis is more subtle. Gonzalez-Acuna
and Short use results of A. Baker [Ba77] and A.O. Gelfond [Ge35] to obtain
estimates. In [GS91] it is shown that if |af| # 1, then

Cexp{—(logr°} < |af — 1| <2,

where C is a positive constant that depends only on f. As in the case that
lai| < 1 we have that |of — lll/r converges to 1.
The conclusion of Proposition 2.8 follows. [

The following is immediate from Propositions 2.8 and 2.5.

COROLLARY 2.9. Assume that the finitely generated R-module M has a
square matrix presentation. Then the subsequence of {b,} consisting of pure
torsion numbers has exponential growth rate equal to M(A).

We can extend the conclusion of Proposition 2.8 to the entire sequence of
resultants by using results from the theory of algebraic dynamical systems.
Only the essential elements of the theory are sketched below. Readers
unfamiliar with dynamical systems might refer to [EW99].
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In brief, to a finitely generated R-module we associate a compact space
and a homeomorphism o from the space to itself. The fixed points of o” form
a closed subspace consisting of exactly b, connected components. Topological
techniques are available to compute the exponential growth rate of b,, and it
coincides with M(A).

THEOREM 2.10. Assume that the finitely generated Ri-module M either
(i) has a square presentation matrix; or (ii) is torsion-free as an abelian
group. Then the sequence {b,} of torsion numbers has exponential growth
rate equal to M(A).

Proof. Let M” denote the Pontryagin dual Hom(M,T); that is, the
topological group of homomorphisms p from M to the additive circle group
T = R/Z. Here M has the discrete topology, and M” the compact-open
topology. Multiplication by ¢ in M induces a homeomorhism o of M”"
defined by o(p)(a) = p(ta), for any p € M” and all a € M. The dual of
M, = M/(t"—1)M is the subspace Fix(c") = {p € M" | o”"p = p}, the set
of points of M” with period r.

Since M, =2’ @ TM,, the dual M” is homeomorphic to TP x TM,.
This follows from two facts: Z” is isomorphic to T ; and A" is isomorphic
to A for any finite abelian group. Hence the number of connected components
of M/ is equal to the cardinality of 7.M,, which by definition is the torsion
number b,. Each component is a torus of dimension [3,, a beautiful fact but
one that we will not use here.

The number of connected components of M’ is the same as the number
N, of connected components of Fix(c"). Theorem 21.1(3) of [Sc95] states
that the exponential growth rate of N, is equal to the topological entropy
of o. (The proof of this deep result uses a definition of topological entropy
in terms of separating sets. For an elementary discussion of the theorem see
[EW99].)

Further, if M has a presentation (2.1) with square matrix .4, then the
topological entropy of o is equal to M(A). (See Example 18.7 (1) of [Sc95].)
Thus 1f the hypothesis (i) is satisfied, then we are done.

If M is torsion-free as an abelian group, then again the topological entropy
of o is equal to M(A) by Lemma 17.6 of [Sc95]. [

The hypotheses of Theorem 2.10 cannot be dropped, as the following
example illustrates.
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EXAMPLE 2.11. Consider the augmented group (G, x) such that

G = (x,a | x *a*xa~%xa*, x>axa"*xa*xa~

2. —6. 2 3 4. 4 1> ’

and x: G —+7Z maps x— 1 and a > 0. A straightforward calculation shows
that M = R, /Q2f, (t—1)f), where f(f) = t*—3t+1. The Alexander polynomial
A 18 ged(2f, (t—1)f) = f, and it has Mahler measure greater than 1. However,
the topological entropy of the homeomorphism o is zero by Corollary 18.5
of [Sc95]. As in the proof of the theorem above, it follows that the torsion

numbers b, have trivial exponential growth rate; that is, limsup,_, bl/ "=1.

3. EXTENDED FOX FORMULA AND RECURRENCE

Let (G, x) be an augmented group, and A the N x M presentation matrix
for the R{-module M as in (2.1). For any positive integer r we can obtain a
presentation matrix for the finitely generated abelian group M, by replacing
each entry g(r) of A by the r x r block ¢(C,), where C, is the companion
matrix of ¢ — 1,

O 1 O 0
0 0 1 0
¢ = : z
0 0 O 1
1 0 O 0

We call the resulting N x rM matrix A(C,). The proof is not difficult. The
torsion number b, is equal to the absolute value of the product of the nonzero
elementary divisors of A(C,).

Assume first that M is a cyclic module. Then A is the 1 x 1 matrix
(A(?)), and the r x r matrix (A(C,)) presents M,. The Betti number S,
is the number of zeros of A that are r™ roots of unity. When it vanishes
the matrix (A(C,)) is nonsingular. Then all elementary divisors of the matrix
are nonzero, and their product is equal (up to sign) to the product of the
eigenvalues, which is the determinant. Fox’s formula (Proposition 2.5) follows
by choosing a basis for C” that diagonalizes the companion matrix C,; we
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then see that the eigenvalues of A(C,) are A(C), where ¢ ranges over the pll
roots of unity. In general, (3, is equal to

s= ) deg®y= ) ¢(d),

d|r d|r
Dy|A D4|A

where ®, is, as before, the d™ cyclotomic polynomial, and ¢ is Euler’s phi
function. We appeal to the following result, a special case of Theorem 2.1
of [MMBS&2].

LEMMA 3.1. Let A be an integral r X r matrix with rank r —s. Suppose
that R is an integral s X r matrix with an s X s minor invertible over Z. such
that RA = 0 and ART = 0 (where RT denotes the transpose matrix). Then
the product of the nonzero eigenvalues of A is equal to =+ det(RRT) times the
product of the nonzero elementary divisors of A.

EXAMPLE 3.2. Suppose that we have a factorization ' —1 = ®@-¥ in Z][1].
Set A = ®(C,). Then we can construct a matrix R satisfying the hypotheses
of Lemma 3.1. We regard R1/(r"— 1) as a free abelian group with generators
1,¢,...,¢"~1. Then the rows of A represent the polynomials @, ®, ..., !®
(modulo # — 1). The rank of A is r — s, where s = deg®. We take R to
be the s x r matrix with rows representing ¥, ¥, ..., "¥. Consider first
the product RA. Regarding the product of the i™ row of R with A as a
linear combination of the rows of A, we see that it represents the polynomial
=¥ .® =0 (modulo # — 1). Hence RA = 0.

The columns of A represent the polynomials ®(t—!), ®( ), ...,
1o, and so the i™ column of AR represents ®(F') - AV(®)
(modulo " —1). Since @ is a product of cyclotomic polynomials, we have
198 2@(;~1) = £®(7). (A cyclotomic polynomial has this property since its
set of roots 1s preserved by inversion, and its leading and constant coefficients
are +1.) So AR” is also zero.

Since the degree of #¥ is less than r for i < s, the s x s minor consisting
of the first s columns of R is upper triangular. The diagonal entries are the

constant term of YW, which must be 4-1. Hence this minor is invertible
over Z.

The matrix A presents R;/(®,1" —1) =2 R, /(®), a free abelian group, so
the product of its elementary divisors is 1. Lemma 3.1 implies that det(RR?)
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is equal up to sign to the product of the nonzero eigenvalues of ®(C,); that is,

(3.1) \ detRR") =+ [ @©.
=1

D(O)#0

THEOREM 3.3. Suppose that the R\ -module M is isomorphic to R /(7).
For any positive integer r, let ® be the product of the distinct cyclotomic
polynomials ®; such that d |r and ®,; | A. Then

(32) b= T1 (5)©)|
NO#0
REMARKS 3.4.

(1) We follow the convention that if no cyclotomic polynomial divides A,
then @ = 1. Clearly b, 1s a pure torsion number if and only if ® = 1. In
this case (3.2) reduces to Fox’s formula (2.2).

(11) See [Sa95] and [HS97] for more calculations and estimations of torsion
numbers b, arising from link groups.

Proof of Theorem 3.3. We write A as @ - g, for some g € Z[¢]. The
matrix A(C,), which presents M, = Ry /(A,f" — 1), has rank r —deg®. The
rank is the same as that of ®(C,). Consider the matrix R of Example 3.2. We
have RA(C,) = (R®(C,))g(C,) = 0 and also A(C,)RT = (®(C,)g(C,))RT =
g(C)(®D(C)HRT) = 0. Formula (3.2) now follows from Lemma 3.1 together
with (3.1). [

If M is a direct sum of cyclic modules, then Theorem 3.3 can be applied
to each summand and the terms produced by (3.2) multiplied together in order
to compute b, . |

When M is not necessarily a direct sum of cyclic modules, but it is
torsion-free as an abelian group, then it is “virtually” a direct sum of cyclic
modules by the following lemma, which appears as Lemma 9.1 in [Sc95]. The
main idea of the proof is to consider the natural injection of M — M ®zQ,
and use the fact that M ®z Q is a finitely generated module over the ring
Q[r*!], which is a principal ideal domain.

We recall that a polynomial in Z[f] is said to be primitive if the only
constants that divide it are £1.
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LEMMA 3.5. Assume that M is a finitely generated Ri-module that
is torsion-free as an abelian group. Then there exist primitive polynomials
Ty, T, € Z[f] such that w; | mipq for all i = 1,...,n— 1, and an
R -module injection i: M — M’ = Rq/(m) & --- ® Ry/(m,) such that
M [i(M) is finite. '

For notational convenience we identify M with its image in M’. Con-
sider the mappings p: M — M and p': M’ — M’ given by a — (' — 1a.
Clearly ker . is a submodule of ker /. We define x(r) to be the in-
dex |ker u' :ker pu|. Let b/ denote the order of the torsion subgroup of
M [(#" — 1)M’. The proof of the following theorem extends techniques
of [We80].

THEOREM 3.6. If the finitely generated Ri-module M is torsion-free as
an abelian group, then for any positive integer r,

by
(3.3) by =5

Moreover, if vy is the cyclotomic order of A, then k(r + ) = k(r) for all r.

LEMMA 3.7. Let 0 = Ay — Ay — --- — A, — 0 be an exact sequence
of finite abelian groups. Then

H |Aeven| = H |Aodd| .

Lemma 3.7 is easily proved using induction on m. We leave the details
to the reader.

Proof of Theorem 3.6. Consider the finite quotient p: M’ — M'/M and
mapping : M'/M — M’/ M given by a s (1" — 1)a. The exact diagram

0 —— M —— M —2 s M/M — 0
v dl
0 —— M —— M —2 4 M/M — 0

induces a second exact diagram
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0 0 0
0———>keru——i———>keru’———p——> keryg —— O

l l

< —

}

0 —— M s MM —— 0
“J{ NIL ﬁl

0 —— M —— M —25 M/M ——0
L |

0 —— M, _t M. ———ﬁ———>cokerﬁ—————>0
| | |
0 0 0

and hence by the Snake Lemma we obtain a long exact sequence

(34) O—kerp -ker ' Lkerm -5 M, 5 M. L coker T — 0.

Let TM, and TM. be the torsion subgroups of M, and M/, respectively.
Since ker 7 1s finite, its image under the connecting homomorphism d is
contained in TM,. Also, i maps TM, into TM/). Hence we have an
induced sequence

(3.5) 0 - ker u - ker i/ B ker § 5 TM, - TM’. L coker 1 — 0.

It is not difficult to verify that (3.5) is exact. The only nonobvious thing to
check is that the kernel of p is contained in the image of 7. To see this,
assume that p(y) = 0. By the exactness of (3.4) there exists an element
x € M, such that i(x) =y. If x ¢ TM,, then the multiples of x are distinct
in M, and each maps by i into the finite group T M/, contradicting the fact
that ker i = d(ker @) is finite.

The following sequence is exact.

(3.6) 0 — ker u'/i(ker p) > kerm — TM, — T/\/l', — coker 7 — 0.

Since M//M, is finite, ker i and coker 7 have the same order.
Lemma 3.7 now completes the proof of (3.3), «(r) being the order of
ker u' /i(ker p).
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The modules M and M’ have characteristic polynomial m,. Since M
embeds in M’ with finite index, a prime polynomial annihilates a nonzero
element of M if and only if it annihilates a nonzero element of M’. Such
polynomials are exactly the prime divisors of m,. It follows that ker 1 and
ker p/ are both periodic, with period equal to the least common multiple -
of the positive integers d such that @, divides A. Hence the same is true
for x(r). [

THEOREM 3.8. Assume that the finitely generated Ri-module M is a
direct sum of cyclic modules or is torsion free as an abelian group. Then the
set of torsion numbers b, satisfies a linear homogeneous recurrence relation
with constant coefficients.

Proof. Write

a=(TT @)
deD
where D = {d : ®; | A}, and let v be the cyclotomic order of A. We

will show that for each R € {0,...,v — 1}, the subsequence of b, with r
congruent to R modulo ~y satisfies

(3.7) b, = Crr™|Res(g,1" — 1),
where Cg, My are constants,

Mp=) ¢dea—1) <M= dd)es—1).

deD deD

dIR
As we saw in section 2, the sequence |Res(g,s” — 1)| satisfies a linear homo-
geneous recurrence relation with characteristic polynomial p of degree at most
2degg  We may normalize p to be monic, p(f) = H (t—A\)Y, with ); dis-
tinct. The general solution to this recurrence relation has the form Z qi(NA;,
where g; is a polynomial of degree less than n; (see [Bro2], Theorem 7.2.2,
for example). Each of the sequences a{® = CrrM*|Res(g,#” — 1)| satisfies
the recurrence relation given by p(f) = Hj(t — /\j)”f+M . It also satisfies the
recurrence relation given by P(r) = [[;(#" — 7)™ since p divides P
Because the powers of ¢ occurring in P are all multiples of v, the latter
recurrence relation also describes the sequence {b,}, which is composed of

the subsequences bryyn = a%lw We note that the degree of P is at most
V(M + 1)2%e9
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First we consider the case when M is cyclic. Given R we set

cD:chd.

dIR

By Theorem 3.3 we have

o] TT ()] = (3550
g

r— €
:H\RCS(CDd, 1) ’
D
, {ed—l if d | R,

deD
€q = .
ey if diR.

where

For each d dividing R,

-1 T ¢ —1
Dy(w)=0 =
I @ — DA 44+ - 4 (r/d=Dd)y
q)d‘(;;)h:o (I)d(t)q)(t) t=w
d
o {t —1 .Al”/d}:_cd.rqs(d),
ool P =y Bw)

where @ = ®/®; and C; depends only on d and R. For d € D not

dividing R,
—1 w =1

Res(® ==
GS( d7 d ) H (I)(w)

Dy(w)=0
i1s constant for r congruent to R modulo v, since d divides -y. Finally,

O R o — 1
Restg, —5 =<0 1] Fg
g(a)=0

where co is the leading coefficient of g; the expression can be rewritten as
C Res(g,t" — 1), where C depends only on R. Thus we can express b, in
the desired form (3.7) for all r congruent to R modulo ~.

For the case when M is a direct sum of cyclic modules R /(7))@ --- @
R1/(m,) we apply the above result to each summand and use the facts that
A=my...m, and b, is the product of the torsion numbers of the summands
to see that equation (3.7) still holds. Finally, if M is torsion free as an abelian
group, we use Theorem 3.6. [
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4. PRIME PARTS OF TORSION NUMBERS

We recall Jensen’s formula, a short argument for which can be found
in [Yo86].

LEMMA 4.1 [Jensen’s formula]. For any complex number «,

1
/ log |a — e*™?|do = logmax{1,|a|} .
0

By Lemma 4.1 the Mahler measure M(f) of a nonzero polynomial with
complex coefficients can be computed as

1
exp/ log.f(ezmg)\dO.
0

This observation motivated the definition of Mahler measure for polynomials
in several variables. (See [Bo81] or [EW99], for example.)

In [EF96], [Ev99] G.R. Everest and B.Ni Fhlathdin proved a p-adic
analogue of Jensen’s formula, which we describe. Assume that « 1is an
algebraic integer lying in a finite extension K of Q. For every prime p
there is a p-adic absolute value |-| , the usual Archimedean absolute value
corresponding to co. We recall the definition (see [La65] for more details): If
p is a prime number, then [p'm/n|, =1/p", where r is an integer, and m,n
are nonzero integers that are not divisible by p. By convention, [0], = 0.
Each ||, extends to an absolute value ||, on K. Let Q, denote the smallest
field which is algebraically closed and complete with respect to |-|,. Let T,
denote the closure of the group of all roots of unity, which is in general
locally compact. Note that if p = oo, then Q, = C and T, = T. Everest
and Fhlathuin define

My, (t — ) = exp/

.1
. log |t — af,dp = exprlggo - Z log [¢ — «f, .

¢r=1

Here | denotes the Shnirelman integral, given by the limit of sums at the
right, where one skips over the undefined summands. The above integral exists
even if o € T, , in which case it can be shown to be zero. Moreover, one has

(4.1) / log |t — a,dp = logmax{1, || },
T

v

which Everest and Fhlathdin refer to as a p-adic analogue of Jensen’s formula.
Recall that b¥ denotes the p-component of b,, the largest power of p

that divides b,. The content of f € Z[t] is the greatest common divisor of
the coefficients. Using (4.1) we will prove
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THEOREM 4.2. Let (G, x) be an augmented group, and let p be a prime.

(1) If M has a square matrix presentation and A(t) # 0, then the sequence
{b,.} of pure torsion numbers satisfies

lim (6)"/" = (content A)® .
F (0.]

(i) If M is a direct sum of cyclic modules, then the sequence of all torsion
numbers satisfies

lim (bﬁp))l/ = (content A)P .
r—0o0

(iii) If M is torsion free as an abelian group, then

lim (@) = 1

F—00

EXAMPLE 4.3. For any positive integer m, consider the augmented group
(G,x) where G is the Baumslag-Solitar group (x,y | y"x = xy") and
x:G—7Z maps x+— 1 and y — 0. One verifies that M = R, /(m(t — 1)).
The quotient module M, is isomorphic to Z"/A,Z", where

m o o0 o0 - —m
A
A, = O -m m 0 .- 0
\O 0 L —m m)

The matrix is equivalent by elementary row and column operations to the

diagonal matrix
m

0
Hence M, =2 Z @ (Z/m)~!, and so b, = m"~! for all r. Consequently,

lim P = m® .

r— 00

The Alexander polynomial of any knot is nonzero, and its coefficients
are relatively prime. Hence the following corollary is immediate from Theo-
rem 4.2 (iii).
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COROLLARY 4.4. For any knot k and prime p,

lim APV =1.

r—00

Theorem 2.10 and Corollary 4.4 imply that whenever the Alexander
polynomial of k has Mahler measure greater than 1, infinitely many distinct
primes occur in the factorization of the torsion numbers b,. In other words, the
homology groups H,(M,,Z) display nontrivial p-torsion for infinitely many
primes p. Since the sequence {b,} is a division sequence, the number of
prime factors of b, is unbounded.

What about the case in which the Alexander polynomial of k£ has Mahler
measure equal to 1 ? The argument of Section 5.7 of [Go72] shows that
the number of prime factors remains unbounded as long as the Alexander
polynomial does not divide ¥ —1 for any M. If it does divide, then the torsion
numbers b, are periodic by Section 5.3 of [Go72] (see also Corollary 2.2 of
[SiWi00]). Hence we obtain

COROLLARY 4.5. For any knot, either the torsion numbers b, are periodic
or else for any N > 0 there exists an r such that the factorization of b, has
at least N distinct primes.

The proof of Theorem 4.2 requires the following lemma.

LEMMA 4.6. If f(t) = cot" + - -+ 4+ cp—1t + ¢, is a nonzero polynomial in
Z[t] with roots \i--- , )\, (not necessarily distinct) in Q,, then

lcol, Hmax{l, |Ail, } = |content £/, .
i=1

Proof. The argument that we present is found in [LW88]. Set a; = ¢;/co
for 0 <j<n,so f(t) = cot" +at" ' +--- +a,). Bach a; is an elementary
symmetric function of the roots )\;, namely the sum of products of roots taken
J at a time. Using the ultrametric property

%+ yl, = max{|x],, ], },

we see that if exactly k values of |>\i|v are greater than 1, then

n
max |&],, = |a|, = [ [ max{1,|x],}.
j=1
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But

Cn

tent
max |a;|, = max{1, |— } = [content /1,
j

?
v CO v |COIU

Hence the lemma is proved. [

Proof of Theorem 4.2. In case (i), the pure torsion number b,k 1s equal

l I1 A(()' We have

(k=1

bul, = | IT 20| =1eol2 TT TTIC=M,.

Ce=1 Ck=1 j=1

where ¢y is the leading coefficient of A and Aq,...J\, are its roots. Hence

11y = leol, T ch |

C’k 1 j=1

= |eol, Hexp Zloglc Al S

k en=1

so that

ry—> 00

lim |b7k|1/rk lcolv HGXP/ loglt_/\jlv du,
1 T,

which by equation (4.1) is equal to
lcol, | Jmax{1,)l,}
j=1

By Lemma 4.6 this is equal to |content A|, . But for integers n we have
n® = |n|". | ‘

Now suppose M is cyclic. As in the proof of Theorem 3.8, we let v be
the cyclotomic order of A and consider the subsequence of b, with r in a
fixed congruence class modulo . Then starting with Theorem 3.3 we may
apply the argument above with A/® in place of A to show that the limit of
(Ibr|(p))1/ " along this subsequence is the p-component of the content of A/®.
But content is multiplicative and cyclotomic polynomials have ‘content 1, so
the limit along all congruence classes is (content A)? . The result is immediate
for direct sums of cyclic modules.
 Finally, we can extend the result when M is torsion-free as an abelian
group using Theorem 3.6. But for this case the content of A 1s 1. O
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5. TORSION NUMBERS AND LINKS

A link is a finite collection [ =1y U--- U/, of pairwise disjoint knots in
the 3-sphere. If a direction is chosen for each component /;, then the link is
oriented. Equivalence for links, possibly oriented, is defined just as for knots.

The abelianization of the group G = m(S° — ) is free abelian of rank
p with generators t,...,t, corresponding to oriented loops having linking
number one with corresponding components of I. When p > 1 there are
infinitely many possible epimorphisms from G to the integers.

When [ is oriented there is a natural choice for x, sending each generator
f; to 1 € Z. In this way we associate to [ an augmented group (G,x). As
in the special case of a knot, M has a square presentation matrix, and it is
isomorphic to the first homology group of the infinite cyclic cover of S$° — [
corresponding to x . Again as in the case of a knot, there is a sequence of r-fold
cyclic covers M, of S? branched over [. However, H;(M,;Z) is isomorphic to
M/ 4+ -4 1t4+1)M rather than M /(" —1)M (see [Sa79]). In the case of
a knot the two modules are well known to be isomorphic (see Remark 5.4(1)).

Motivated by these observations we make the following definitions. Let

—~

M, denote the quotient module M /v, M, where v, =1 4+ ... + ¢+ 1.

DEFINITION 5.1. Let. (G,x) be an augmented group. The Jth reduced
torsion number b, 1is jhe order of the: Lo/tsion submodule TM,. The r?
reduced Betti number (3, is the rank of M.

As before, we may also speak of the reduced torsion and Betti numbers
of a finitely generated R;-module M.

Many results of Section 2 apply to reduced torsion and Betti numbers
with only slight modification. For example, an argument similar to the proof
of Proposition 2.1 shows that 3, is the number of zeros of the Alexander
polynomial which are roots of unity and different from 1, each zero counted
as many times as it occurs in the elementary divisors A;/A;;;; hence Er 1S
periodic in r. Also, when (3, = 0 the reduced torsion number Zr 1s equal to
the absolute value of the resultant of A and v,.

LEMMA 5.2. Assume that 0 — A L5 B I C = 0 is an exact sequence
of finitely generated abelian groups. If A is finite, then the induced sequence

0—ALTBI TC =0

is also exact.
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Proof. The only thing to check is surjectivity of g. Since the alternating
sum of the ranks of A,B and C is zero and A is finite, the ranks of B and
C are equal. By Lemma 2.3 the homomorphism g maps 7B onto 7C. []

PROPOSITION 5.3. Assume that the finitely generated Ri-module M has
a square presentation matrix. If A(1) # 0, then for every r,

- ~ b,
(51) /Br::Bra br: <

where 6, is a divisor of |A(1)|. Moreover, 6,1~ = §,, for all r, where vy is
the cyclotomic order of A.

Proof. Consider the sequence
Ml _VV_> Mr _L Mr_> O,

where v, is multiplication by v, = 1 4...4¢t+1, and 7 is the natural
projection. It is easy to see that the sequence is exact. From it we obtain the
short exact sequence

O—>M1/kerur1>/\/lr1>/?/l/r——>0.

Here v, also denotes the induced quotient homomorphism. Since A(1) # O,
the module M is finite and hence [, = Br. The order of M; is |A(1)],
and hence the order of M, /ker v, is a divisor d,. The second statement of
(5.1) follows from Lemmas 5.2 and 3.7.

It remains to show that ¢, has period . For this let 0 = a € M. The coset
a € M; is in the kernel of v, if and only if there exists b € M such that
vi(a— (t—1)b) = 0. Clearly this is true if and only if v, y(a— (¢ —1)b) =0,
where (v, r) denotes the gcd of v and r. Hence the kernel of v, is equal to
the kernel of 1, ,, and the periodicity of d, follows. []

REMARKS 5.4.

(i) If G is a knot group, then any two meridianal generators are conjugate.
Consequently M is trivial. Proposition 5.3 implies that in this case, the
torsion numbers b, and b, are equal for every r.

(ii) It is well known that for any oriented link [ = /;Ul, of two components,
|A(1)| is equal to the absolute value of the linking number Lk(l;,1). (See
Theorem 7.3.16 of [Ka96].)
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PROPOSITION 5.5. Let M be a finitely generated Ri-module with a
square presentation matrix. Assume that A(t) = (t — 1)4g(t), with g(1) # O.
If p is a prime that does not divide g(1), then

3., — o) _ gk
/Bpk _‘Oa bp - ?

for every k > 1.
The proof of Proposition 5.5 requires:

LEMMA 5.6. Let g(t) be a polynomial with integer coefficients, and
assume that p is a prime. If p does not divide g(1), then p does not
divide Res(g,tpk — 1) for any positive integer k.

Proof of Lemma 5.6. Assume that p does not divide g(1). Recall that
®,(¢) denotes the n™ cyclotomic polynomial. From the formula

[T @) = vu(1) = n,

din
a>1
we easily derive
0 ifd=1
O,1)=< g ifd=g>1, g prime
1 other d.

Consequently, @, does not divide g for any k > 0, and so Res(g, - 1) #0.

The module H = R4/(g, P — 1) has order |Res(g, , and it suffices to
prove that H ®z Z/p is trivial. Now, H ®z Z/p is isomorphic to the quotient
of the PID (Z/p)[t,t~'] by the ideal generated by the greatest common divisor
of g and # —1 in this ring. But 1= (t— 1)pk in this ring, and r—1 does
not divide g since p does not divide g(1). So the ged is 1, and H ®z Z/p
is trivial. [

Proof of Proposmon 5.5. Let k be any positive integer. Lemma 5.6 implies
that Res(g,tp — 1) # 0. Hence (3, vanishes, and therefore ﬁpk is also zero.
By a result analagous to Proposition 2.5 and the multiplicative property of
resultants

by = |Res(A, v)| = |Res(t — 1, 10| | Res(g, v0)| = 0")7|Res(g, v)| -

By Lemma 5.6, p does not divide lRes(g, P — 1)‘. Hence p does not divide
Res(g, v,x), and so p®) pe = ph ]
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COROLLARY 5.7. (i) Let M, be the r-fold cyclic cover of S° branched

over a knot. If r is a prime power p*, then the p-torsion submodule of
H\(M,;Z) is trivial.

(i) Let M, be the r-fold cyclic cover S® branched over a 2-component
link l =0 UL. If r is a power of a prime that does not divide 1k(ly,1,),
then the p-torsion submodule of H\(M,;Z) is trivial.

Proof. Statement (1) was proven in [Go78]. Here it follows from Propo-
sition 5.5 together with the well-known fact that |A(1)| = 1, whenever A is
the Alexander polynomial of a knot. The second statement is a consequence
of Proposition 5.5 and Remark 5.4 (ii). [

PROPOSITION 5.8. Suppose that M is a finitely generated Ri-module
that is isomorphic to R1/(A). If A(t) = (t—1)2g(t), where g(1) #£ 0, then for
every positive integer r, there exists a positive integer 0, such that

b, = (6))7 - |[T(R1/(g,v))| -

Moreover, &, , = 6., for all r, where v is the cyclotomic order of A.
r+-y r Y

REMARKS 5.9.

(i) The order |T(R/(g,v,))| can be found using Proposition 5.3 and
Theorem 3.3.

(i1)) When M is a direct sum of cyclic modules, b, can again be found
by applying Proposition 5.5 to each summand. When M is not a direct sum
of cyclic modules but is torsion free as an abelian group, a result analogous
to Theorem 3.6 can be found by replacing # — 1 everywhere by v, in the
proof. As in Section 3, the torsion numbers 5, are then seen fo satisfy a
linear homogeneous recurrence relation.

Proof of Proposition 5.8. Consider the exact sequence
0 — ker g = R1/((t — D%, 1) 5 Ry/(¢ — g, vs) > Ri/(g,v) = 0,

where the first homomorphism is inclusion, the second is multiplication by
g, and the third is the natural projection. The order of R;/((t — 1)?,v,) is
equal to |Res((r — 1)?,v,)|, which is equal to r?. The kernel of g is generated
by v./f,, where f, is the greatest common divisor of g and v,. Notice that
fr4~ =1+, for all r. Lemmas 5.2 and 3.7 complete the proof.  []
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We conclude with a generalization of Corollary 5.7 (11).

When (G, x) is the augmented group corresponding to a 2-component
link [, the epimorphism x factors through 7 : G — G, = Z*. For any
finite-index subgroup A C Z? there is a |Z*/A|-fold cover of §° branched
over | corresponding to the map G — Z? — Z2/A. The cover M, is a special

case corresponding to the subgroup A generated by #; —t,, #{, ;. We denote
the rank of Hj(My;Z) by (B and the order |TH{(Mx;Z)| by by.

THEOREM 5.10. Let [ =1,Ul, be a link in S°. If p is a prime that does
not divide 1k(l;, 1), then By =0 and b® =1 for any subgroup A C Z? of
index p*, k> 1.

Proof. Let M,, be the kernel of 7. We consider the dual M/, which is a
compact abelian group with a Z?*-action by automorphisms induced by conju-
gation in G by #; and t,. The automorphism induced by n € Z? is denoted by
on ; the automorphims induced by (1,0) and (0, 1) are abbreviated by o7 and
o9, respectively. The dual M{; can be identified with a subspace of Fixj(o) =
{p € Mg\ : opp = p for all n € A}. Details can be found in [SWO0O].

From the elementary ideals of M, a sequence of 2-variable Alexander
polynomials A;(#;,#) is defined; when i = 0, setting #; = f, = ¢ recovers
A(r). By [Cr65], Ag(t1,%) annihilates M, . Hence Ay(oy,0,)p = 0 for all
p € My . Consequently, if onp = p for all n € Z* then 0 = Ag(oy, 00)p =
Ao(1,1)p = A(1)p. Recall that A(1) = Lk(ly,1,).

Let

Y={p: My —=Z/p : ougp=pforall neA}.

We identify Z/p with the group of p'™ roots of unity, so that ¥ is contained
in M{; It is a subspace of Fixa(c) invariant under the Z?-action, and it
contains a subspace isomorphic to M, ®z Z/p. It suffices to prove that Y is
trivial.

Our hypothesis that p does not divide the linking number of [; and I,
implies that Ag(#1,%) is not zero. Consequently, Y is a finite p-group and so
its order is a power of p. In view of the second paragraph, the hypothesis
also implies that the only point fixed by the Z?-action is trivial. But

Y] =) 10,1 = |Z¢/ stab(p)|,

where the sums are taken over distinct orbits O, and stabilizers stab(p),
respectlvely Each stabilizer contains A, and so ]Zd / stab(p)‘ is a divisor of

p* whenever p # 0. Hence |Y| is congruent to 1 mod p. Since |Y| is a
power of p, the subspace Y must be trivial. [
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