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l'infini dans X (ici nous avons utilisé les formules 5). Comme la première
courbe contractée par tt2 doit être d'auto-intersection —1, et ne peut être la
dernière courbe produite par tt\ (car cela contredirait le fait que ps est un
point d'indétermination), on obtient bien que la première courbe contractée par
7T2 est la transformée stricte d'une courbe contenue dans le diviseur à l'infini
de X. La dernière assertion n'est qu'une reformulation de la quatrième, dans

le cas où X P2.

3. Preuve du théorème de Jung

Nous considérons g un automorphisme polynomial de C2, que nous

prolongeons en une application birationnelle (toujours notée g) de P2 dans

lui-même. Si g s'écrit

g: (v,y) i-> (gi(x,y),g2(x,y))

et que n est le degré de g (c'est-à-dire le plus grand des degrés de g\ et g2),
alors en coordonnées homogènes l'extension de g à P2 s'écrit

g: \x : y : z] — > [.zng\(x/z,y/z) : zng2(x/z,y/z) : zn].

La droite à l'infini dans P2 est ici la droite d'équation z 0. Nous voulons

montrer que g s'écrit comme une composée d'automorphismes affines et

élémentaires. La preuve va s'effectuer par récurrence sur le nombre #ind(g)
de points d'indétermination de g.

D'après le lemme 9 (assertion 1) le prolongement g: P2 ---> P2 admet

un unique point d'indétermination propre situé sur la droite à l'infini. En

composant g par un automorphisme affine nous pouvons nous* ramener au

cas où ce point est [1 : 0 : 0]. Autrement dit nous avons un diagramme
commutatif :

P2

où a est affine et go admet [1 : 0 : 0] comme point d'indétermination. Bien
sûr on a

# ind (go) # ind (g).
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Nous allons maintenant montrer qu'il existe un diagramme

(fi y" \ 90°<P
1

/ \/

où cp est le prolongement d'un automorphisme élémentaire de C2, et tel que

Notre démarche va consister à considérer le diagramme donné par le théorème

de Zariski1 :

et à réordonner les éclatements mis en jeu dans tt\ et 7T2- Ainsi, au cours

de quatre étapes que nous allons maintenant détailler, <p va être construit en

réalisant certains éclatements de la suite iï\ et certaines contractions de la

suite 7T2-

Première étape: éclatement de [1:0:0]
Le point [1:0:0] est le premier point éclaté par ; considérons

donc la surface F\ obtenue en éclatant P2 au point [1:0:0]. Cette

surface est un compactifié de C2 et est naturellement munie d'une fibration
rationnelle correspondant aux droites 3; constante. Le diviseur à l'infini est

constitué de deux courbes rationnelles (i.e. isomorphes à P1) s'intersectant
transversalement en un point. On distingue d'une part la transformée stricte
de la droite à l'infini dans P2 ; c'est une fibre que nous noterons /oo. D'autre

part on a le diviseur exceptionnel de l'éclatement, qui est une section pour
la fibration : nous la noterons ^. On a bien sûr (appliquer les formules 5)

/Iq — 0 et s1^ — 1. Plus généralement pour tout n > 1 nous noterons Fn

un compactifié de C2 muni d'une fibration rationnelle, tel que le diviseur à

l'infini soit constitué de deux courbes rationnelles transverses : une fibre
et une section Soo d'auto-intersection —n. Ces surfaces sont classiquement

# ind (g0 o (p *) < # ind (g0).

M

90
^P2

*) Chaque fois que nous utiliserons le théorème de Zariski nous noterons M, tri et 71*2 la
surface et les suites d'éclatements produites, le contexte permettant d'éviter toute confusion.
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appelées surfaces de Hirzebruch; nous ne présupposons aucune connaissance

particulière les concernant. Un point de notation: nous écrirons Soo(F„) et

foo(Fn) quand plus d'une surface de Hirzebruch seront mises en jeu.

Revenons à l'application go. Considérons le diagramme commutatif:

(Dl) F!
m \ 9\

/ \/ A

où (pest l'application d'éclatement au point [1 : 0 : 0]. On a

# ind (g\) — # ind (go) — 1.

Reprenons maintenant le diagramme donné par le théorème de Zariski
appliqué à go. D'après le lemme 9 (assertion 5) la première courbe contractée

par 7T2, qui doit être une courbe dans M d'auto-intersection —1, est la
transformée de la droite à l'infini. Celle-ci correspond à la fibre /oo dans F\.
Or dans F\ on a /^ 0. L'auto-intersection de cette courbe doit encore
diminuer d'un, donc le point d'indétermination propre p de g\ est situé sur

/oo. Par ailleurs on sait (lemme 9, assertion 2) que ce même point p appartient
à la courbe produite par l'éclatement ^f1, à savoir Finalement p est

précisément le point d'intersection de /^ et Soo.

Deuxième étape : récurrence ascendante

Dans le raisonnement qui va suivre nous utiliserons des applications entre

surfaces réglées généralement appelées "transformations élémentaires" (cependant

nous n'emploierons pas cette terminologie, ce qui évitera d'ailleurs toute

confusion avec les éléments du groupe E). Ces transformations sont la
composée d'un éclatement et d'une contraction. Plus précisément soit S une

surface réglée, c'est-à-dire une surface munie d'une fibration /: S i-A C où

C est une courbe, et telle que toutes les fibres de / soient isomorphes
à P1. Considérons p G S et notons F. la fibre contenant p. La transformation

élémentaire au point p est l'application birationnelle qui consiste à

éclater le point p (produisant ainsi un diviseur exceptionnel F') puis à

contracter la transformée stricte de F. On obtient ainsi une nouvelle surface

réglée S'.
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Dans les preuves des lemmes 10 et 11 nous allons utiliser de telles

transformations, pour des surfaces réglées de base C isomorphe à P1.

Lemme 10. Soit n>\, et h une application birationnelle de Fn dans P2

qui provient d'un automorphisme polynomial de C2. Supposons que l'unique

point d'indétermination propre de h soit le point p intersection de fooiFn) et

Soo(Fn). Considérons le diagramme commutatif

Fn-\-\

<P * X
x h'

/ \/
Fn

h

où (p consiste à éclater p puis à contracter la transformée stricte de f^.
Alors l'application birationnelle h' h o <p~l satisfait les deux propriétés
suivantes :

• # ind (h') £= # ind (h) — 1 ;

• le point d'indétermination propre de h' est situé sur /oo^+i).

Preuve. Considérons la décomposition de h en suites d'éclatements:

M

Fn- P2
h

La transformée (stricte) de s^iFf) dans M est d'auto-intersection inférieure

ou égale à —2 ; le lemme 9 (assertion 4) nous permet d'en déduire que
la première courbe contractée par 712 est la transformée de foo(Fn). La
transformée de foo(Fn) dans M est donc d'auto-intersection —1 ; d'autre

part dans Fn on a /oo(^n)2 0. On en déduit qu'après avoir éclaté p le
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reste de la suite d'éclatements tt\ concerne des points hors de Au lieu
de réaliser ces éclatements puis de contracter la transformée de foo(Fn) on

peut renverser l'ordre, à savoir contracter foo(Fn) puis réaliser le reste de la
suite d'éclatements. Autrement dit on a un diagramme commutatif (7tp est

l'éclatement en p et cont^ consiste à contracter la transformée de foo(Fn)) :

Les deux applications, éclatement de p puis contraction de foo(Fn)y sont
résumées dans le dessin suivant où l'on a représenté uniquement les diviseurs
à l'infini, en précisant les auto-intersections (celles-ci étant calculées à l'aide
des formules 5). On constate en particulier que la surface obtenue est bien de

type Fn+1.

-l0

fco (Fn)

S00 (Fn)

foo(Fn)

éclater p

0

foo(Fn+ù F'

contracter foo(Fn)

-(n + 1)

-(n + 1)

s00 {Fn-j-1

— -S00 (Fn)

En conclusion, éclater p diminue d'un le nombre de points d'indétermination,
et contracter la transformée de foo(Fn) n'en introduit pas de nouveau: on a

bien #ind {h') #ind(/z) — 1. D'autre part le point d'indétermination de h' est

situé sur la courbe qui a été produite en éclatant /?, à savoir /oo(Fn+i).

A l'issue de la première étape nous sommes dans les conditions

d'application du lemme 10, avec n — 1. Le lemme fournit une application

h' : F2 —> P2 dont le point d'indétermination propre est situé sur la fibre

fooiFf). Si ce point est précisément le point d'intersection avec la section à

l'infini, on peut de nouveau appliquer le lemme. En répétant ce processus
aussi longtemps que l'on reste dans les hypothèses du lemme 10 on obtient

un diagramme:
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(D2)
^2 / < \ \ 92

// \
91

^ p2

où (f2 est obtenu en appliquant n— 1 fois le lemme 10. De plus on a

#ind(^2) #ind(^i) — n + l.
Enfin le point d'indétermination de g2 est situé sur foo(Fn), et n'est pas

précisément le point d'intersection avec s^iFf) (sinon on pourrait appliquer
le lemme une fois de plus).

Troisième étape : récurrence descendante

Nous allons appliquer le lemme suivant, qui est analogue au lemme 10

(mais bien noter qu'ici nous supposons n > 2).

LEMME 11. Soit n > 2, et h une application birationnelle de Fn dans P2

qui provient d'un automorphisme polynomial de C2. Supposons que l'unique
point d'indétermination propre p de h soit situé sur mais ne soit pas
précisément le point d'intersection de /oo et Soq Considérons le diagramme
commutatif

où p consiste à éclater p puis à contracter la transformée stricte de foo(Fn).
Alors l'application h' satisfait les deux propriétés suivantes:

• #ind(/z7) #ind(/z) — 1 ;

• le point d'indétermination propre de h' est situé sur /00(E1n_1) et n'est
pas le point d'intersection de foo(Fn-{) et s^fF^x).

h
-P2

Preuve. Considérons la décomposition de h donnée par le théorème de
Zariski :

M
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La transformée de s^F#) dans M est d'auto-intersection —n, comme n >2
on en déduit (lemme 9) que la première courbe contractée par tt2 est la
transformée de foo(Fn). Comme dans la preuve du lemme 10 on obtient un
diagramme commutatif:

La surface obtenue en éclatant p puis en contractant la transformée de /«
est bien de type Fn_i ; ceci est résumé par le dessin suivant.

P 0

foo (Fn)

Soo(Fn)

éclater p

point d'indétermination (non propre) de h
correspondant au point d'indétermination propre de h'

-{n - 1)
-1

foo(Fn)

SooiJFn)

foo(Fn-i) Ff

contracter foo(Fn)

soo(Fn—{)
— Soo(Fn)

L'égalité #ind {h') #ind (h) — 1 est immédiate. Notons Ff le diviseur

produit en éclatant le point p ; h admet un point d'indétermination (non

propre) situé sur F'. De plus ce point ne peut pas être précisément le point
d'intersection de F' et de la transformée de foo(Fn), car sinon on aurait

^ïl(foo{Fn)) d'auto-intersection inférieure ou égale à -2 ce qui contredirait

qu'il s'agit de la première courbe contractée par 712. En conclusion ce

point correspond au point d'indétermination propre de h', et celui-ci est

donc situé sur foo(Fn-\) et n'est pas le point d'intersection de /oo(^n-i) et

Soo(Fn-i).

Après la deuxième étape on se trouve dans les hypothèses du lemme 11.

Remarquons de plus que si n > 3 l'application h' produite satisfait encore les
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hypothèses de ce même lemme. Après avoir appliqué n — 1 fois le lemme 11

nous obtenons un diagramme

(D3) F\
<P3 / * X

\ 93

/ \/ A

f ^ P2n 92

avec

#ind(g3) #ind(^2) — n + 1.

Enfin, le point d'indétermination propre de g3 est situé sur /oo(Fi), et n'est

pas le point d'intersection de /ooC^i) ^oo(^i)-

Quatrième étape : dernière contraction

En appliquant le théorème de Zariski à g3 nous obtenons un diagramme :

M

ti >- p21
93

Le lemme 9 (assertion 4) affirme que la première courbe contractée par tt2 est

la transformée stricte par 7ir ou bien de ou bien de Soo. Supposons que ce

soit la transformée de Alors après avoir réalisé la suite d'éclatements tti
et avoir contracté cette courbe, la transformée de soo est d'auto-intersection
0 et ne pourra donc plus être contractée; ceci vient contredire la troisième
assertion du lemme 9. La première courbe contractée est donc la transformée
de Soo, que l'on peut contracter par avance pour obtenir le diagramme suivant :

(D4) P2

Le morphisme est l'application d'éclatement de diviseur exceptionnel Sqq,

que l'on peut choisir (puisqu'elle est définie modulo isomorphisme) de manière
à ce que le point sur lequel on contracte soit [1 : 0 : 0]. On a de plus

#ind (g3) #ind (g4)
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Conclusion

On peut regrouper les quatre diagrammes (Dl),..., (D4) en un seul

|-i V2 j-, V3 j-pFi ~ - >- Fn - - >- Fi
vi y \

\

90

\ 9\
\
\
\

92 / 93

.Wir. -

P2

94

soit de manière condensée:

¥4 O (p3 O tp2 O (fi ///
P2

90

94

\ A
-^p2

avec

#ind(^4) #ind(<?o) — 2/2+1 (où n> 2).

Reste à vérifier que <p ip4 o <p<$ o cp2 o cpi est un automorphisme élémentaire.

Pour cela il suffit de constater que cp préserve le feuilletage y constante,
autrement dit que (^ préserve le pinceau des droites passant par [1 : 0 : 0]. Or
ceci est immédiat: l'éclatement cp\ envoie les droites passant par [1:0:0]
sur les fibres de F\, (p2 et (ps respectent les fibrations associées à F\ et

Fn, et enfin la contraction p>4 envoie les fibres de F\ sur les droites passant

par [1:0:0]. L'application g4 est donc un automorphisme de C2 qui
s'obtient en composant g avec un automorphisme affine puis un automorphisme

élémentaire, et satisfaisant l'inégalité:

#ind(#4) < #ind(g).

Par récurrence sur #ind(g), ceci termine la démonstration.

4. Compléments

4.1 Un exemple

Considérons l'automorphisme g suivant:

g: (x,y) h+ (y + ß(y + ax2)2 + 7(y + ax2)3,y + ax2) avec a, ß, 7 G C*
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