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I'infini dans X (ici nous avons utilisé les formules 5). Comme la premiere
courbe contractée par m, doit étre d’auto-intersection —1, et ne peut étre la
derniere courbe produite par m; (car cela contredirait le fait que p, est un
point d’indétermination), on obtient bien que la premiere courbe contractée par
7y est la transformée stricte d’une courbe contenue dans le diviseur & I’infini

de X. La derniere assertion n’est qu’une reformulation de la quatrieme, dans
le cas o X =P2. [

3. PREUVE DU THEOREME DE JUNG

Nous considérons g un automorphisme polynomial de C?, que nous
prolongeons en une application birationnelle (toujours notée g) de P? dans
lui-méme. Si g s’écrit

g: (x,y) = (g1(x,¥), g2(x,¥))

et que n est le degré de g (c’est-a-dire le plus grand des degrés de g; et g»),
alors en coordonnées homogénes 1’extension de g a P? s’écrit

g:[x:y:z] - [f'a1(x/2,y/2) : Z'92(x/2,y/2) : 7'].

La droite 4 I’infini dans P? est ici la droite d’équation z = 0. Nous voulons
montrer que ¢ s’écrit comme une composée d’automorphismes affines et
élémentaires. La preuve va s’effectuer par récurrence sur le nombre #ind (g)
de points d’indétermination de g.

D’aprés le lemme 9 (assertion 1) le prolongement g: P? --» P? admet
un unique point d’indétermination propre situ€ sur la droite a l'infini. En
composant g par un automorphisme affine nous pouvons nous ramener au
cas ou ce point est [1 : O : 0]. Autrement dit nous avons un diagramme
commutatif :

ou a est affine et go admet [1:0: 0] comme point d’indétermination. Bien
sir on a

#ind (go) = #1nd (g) .
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Nous allons maintenant montrer qu’il existe un diagramme

P2
AN
90/1 \QOO‘Pl
/ AN
/s N\
Pz___é?)_—>l)2

ot ¢ est le prolongement d’un automorphisme élémentaire de C?, et tel que
#ind (go 0 ¢~ 1) < #ind (go) -

Notre démarche va consister a considérer le diagramme donné par le théoreme
de Zariski!):

M
7 X
PZ___g_O___>P2

et & réordonner les éclatements mis en jeu dans m; et 7. Ainsi, au cours
de quatre étapes que nous allons maintenant détailler, ¢ va €tre construit en
réalisant certains éclatements de la suite 7, et certaines contractions de la
suite 7.

PREMIERE ETAPE: ECLATEMENT DE [1:0: 0]

Le point [1 : O : O] est le premier point éclaté par m;; considérons
donc la surface F; obtenue en éclatant P? au point [1 : O : 0]. Cette
surface est un compactifié de C? et est naturellement munie d’une fibration
rationnelle correspondant aux droites y = constante. Le diviseur a 1’infini est
constitué de deux courbes rationnelles (i.e. isomorphes 2 P!) s’intersectant
transversalement en un point. On distingue d’une part la transformée stricte
de la droite a I’infini dans P?; c’est une fibre que nous noterons f,,. D’autre
part on a le diviseur exceptionnel de I’éclatement, qui est une section pour
la fibration: nous la noterons s.,. On a bien siir (appliquer les formules 5)
f2 =0 et s, = —1. Plus généralement pour tout n > 1 nous noterons F,
un compactifié de C*> muni d’une fibration rationnelle, tel que le diviseur
I'infini soit constitué de deux courbes rationnelles transverses: une fibre f.,
et une section s, d’auto-intersection —n. Ces surfaces sont classiquement

) Chaque fois que nous utiliserons le théoréme de Zariski nous noterons M, T et m la
surface et les suites d’éclatements produites, le contexte permettant d’éviter toute confusion.
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appelées :surfaces -de Hirzebruch; nous ne présupposons aucune connaissance
particuliere les concernant. Un point de notation: nous écrirons s..(F,) et
foo(Fr) quand plus d’une surface de Hirzebruch seront mises en jeu.

Revenons a l’application go. Considérons le diagramme commutatif:

(D1) Fy

ou 901_1 est I’application d’éclatement au point [1:0:0]. On a

#ind (g1) = #ind (go) — 1.

Reprenons maintenant le diagramme donné par le théoreme de Zariski
appliqué a go. D’apres le lemme 9 (assertion 5) la premicre courbe contractée
par 7, qui doit étre une courbe dans M d’auto-intersection —1, est la
transformée de la droite a I’infini. Celle-ci correspond a la fibre f., dans Fj.
Or dans F; on a f2 = 0. L’auto-intersection de cette courbe doit encore
diminuer d’un, donc le point d’indétermination propre p de g; est situé sur
foo - Par ailleurs on sait (lemme 9, assertion 2) que ce mé€me point p appartient
a la courbe produite par I’éclatement gol_l, a savoir S, . Finalement p est
précisément le point d’intersection de fo, et Soo-

DEUXIEME ETAPE : RECURRENCE ASCENDANTE

Dans le raisonnement qui va suivre nous utiliserons des applications entre
surfaces réglées généralement appelées “transformations €lémentaires” (cepen-
dant nous n’emploierons pas cette terminologie, ce qui €vitera d’ailleurs toute
confusion avec les éléments du groupe E). Ces transformations sont la com-
posée d’un éclatement et d’une contraction. Plus précisément soit S une
surface réglée, c’est-a-dire une surface munie d’une fibration f: S — C ou
C est une courbe, et telle que toutes les fibres de f soient isomorphes
a P!. Considérons p € S et notons F_la fibre contenant p. La transfor-.
mation élémentaire au point p est I’application birationnelle qui consiste a
éclater le point p (produisant ainsi un diviseur exceptionnel F’) puis a con-
tracter la transformée stricte de F. On obtient ainsi une nouvelle surface
réglée S’ .
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F FI /
S ) S/
p éclater p contracter F
————— > —
F
\ /
/'\C

Dans les preuves des lemmes 10 et 11 nous allons utiliser de telles
transformations, pour des surfaces réglées de base C isomorphe a Pl

LEMME 10. Soit n > 1, et h une application birationnelle de F, dans P2
qui provient d’un automorphisme polynomial de C?. Supposons que [’unique
point d’indétermination propre de h soit le point p intersection de foo(Fy) et
Soo(Fy). Considérons le diagramme commutatif

Fn+1

ol @ consiste a éclater p puis a contracter la transformée stricte de foo.
Alors Uapplication birationnelle W' = ho ¢~ satisfait les deux propriétés
suivantes :

e #ind(W)=4#ind(h)—1;

e le point d’indétermination propre de h' est situé sur foo(Fyi1).

Preuve. Considérons la décomposition de s en suites d’éclatements :

M
N
Fn———z——>P2

La transformée (stricte) de s.o(F,) dans M est d’auto-intersection inférieure
ou égale a —2; le lemme 9 (assertion 4) nous permet d’en déduire que
la premiere courbe contractée par m, est la transformée de f,,(F,). La
transformée de f.(F,) dans M est donc d’auto-intersection —1; d’autre
part dans F, on a foo(F)?> = 0. On en déduit qu’apres avoir éclaté p le
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reste de la suite d’éclatements 1 concerne des points hors de f,. Au lieu
de réaliser ces éclatements puis de contracter la transformée de foo(F,) on
peut renverser I’ordre, a savoir contracter f..(F,) puis réaliser le reste de la
suite d’éclatements. Autrement dit on a un diagramme commutatif (7, est
I’éclatement en p et conty_ consiste a contracter la transformée de foo(Fy)):

M -

MI

" N
Fn - Fn+l —————— > P2

~ ~
~ ~
~ —~

= |

Les deux applications, éclatement de p puis contraction de f.,(F,), sont
résumées dans le dessin suivant ou I’on a représenté uniquement les diviseurs
a I'infini, en précisant les auto-intersections (celles-ci étant calculées a 1’aide
des formules 5). On constate en particulier que la surface obtenue est bien de

type Fri1.

= 1= Foo () :
foo(Fn) o foo(Fup1) = F'
_é(ilﬁtt_er_ {; contracter foo(Fp,) i+ 1)
—n
Soo (Fn) —(n+1) Soo(Fn—}-l)
= Soo(Fn)

En conclusion, éclater p diminue d’un le nombre de points d’indétermination,
et contracter la transformée de f.,(F,) n’en introduit pas de nouveau: on a
bien #ind (h") = #ind (k) — 1. D’autre part le point d’indétermination de A’ est
situé sur la courbe qui a été produite en éclatant p, a savoir foo(Fy+1). [l

A Tlissue de la premicre étape nous sommes dans les conditions
d’application du lemme 10, avec n = 1. Le lemme fournit une applica-
tion A': F, --+» P? dont le point d’indétermination propre est situé sur la fibre
foo(F2). Si ce point est précisément le point d’intersection avec la section a
I’infini, on peut de nouveau appliquer le lemme. En répétant ce processus
aussi longtemps que 1’on reste dans les hypotheéses du lemme 10 on obtient
un diagramme :
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(D2) F,
w2 ¥ h < 92
7/ N
/ A\
______ 2
£y gi ~P

oll ¢, est obtenu en appliquant n — 1 fois le lemme 10. De plus on a
#ind (gp) = #ind(g;) —n+ 1.

Enfin le point d’indétermination de g, est situé sur f,.(F,), et n’est pas
précisément le point d’intersection avec so.(F,) (sinon on pourrait appliquer
le lemme une fois de plus).

TROISIEME ETAPE : RECURRENCE DESCENDANTE

Nous allons appliquer le lemme suivant, qui est analogue au lemme 10
(mais bien noter qu’ici nous supposons n > 2).

LEMME 11. Soit n > 2, et h une application birationnelle de F, dans P?
qui provient d’un automorphisme polynomial de C*. Supposons que !'unigue
point d’indétermination propre p de h soit situé sur f., mais ne soit pas
précisément le point d’intersection de f., et So. Considérons le diagramme
commutatif

ou @ consiste a éclater p puis a contracter la transformée stricte de foo(F),).
Alors 'application K satisfait les deux propriétés suivantes :

e #ind (%) =#ind(h) —1;

e le point d’indétermination propre de h' est situé sur foo(F,_1) et n’est
pas le point d’intersection de foo(Fy_1) et Soo(Fp_1).

Preuve. Considérons la décomposition de 4 donnée par le théoréme de
Zariski :
M
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La transformée de so.(F,) dans M est d’auto-intersection —n, comme n > 2
on en déduit (lemme 9) que la premiere courbe contractée par m, est la
transformée de f.(F,). Comme dans la preuve du lemme 10 on obtient un
diagramme commutatif:

M\contfoo

M/

Wp/ \COl’ltfoo
Fn\ Fn—l —————— >P2

~ ~
~ -~
~ -

La surface obtenue en éclatant p puis en contractant la transformée de f,,
est bien de type F,_;; ceci est résumé par le dessin suivant.

point d’indétermination (non propre) de A
correspondant au point d’indétermination propre de A’

" %—J \
p 0 1 0

foo(F) fooFn1) = F'
fé(il?t_er_ e) rfo:(;“n) contracter foo (Fp) - 1)
—n
Soo(Fn) —n Soo(Fn—1)
oo (Fi) = Soolfn)

L’égalité #ind(h') = #ind(h) — 1 est immédiate. Notons F’ le diviseur
produit en éclatant le point p; h admet un point d’indétermination (non
propre) situé sur F'. De plus ce point ne peut pas étre précisément le point
d’intersection de F’ et de la transformée de f,,(F,), car sinon on aurait
T '(f-o (F,)) d’auto-intersection inférieure ou égale & —2 ce qui contredirait
qu’il s’agit de la premiere courbe contractée par m,. En conclusion ce
point correspond au point d’indétermination propre de A, et celui-ci est
donc situé sur f(F,—1) et n’est pas le point d’intersection de f.o(F,_1) et
SOO(F n—l)- D

Apres la deuxieme étape on se trouve dans les hypotheéses du lemme 11.
Remarquons de plus que si n > 3 1’application 4’ produite satisfait encore les
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hypoth&ses de ce méme lemme. Aprés avoir appliqué n — 1 fois le lemme 11
nous obtenons un diagramme ’

(D3) Fy
©3 v 7 h ~ 93
/ AN
/ A\
______ > P2
Fa 92 p
avec

#ind (g3) = #ind(gp) —n+ 1.

Enfin, le point d’indétermination propre de g3 est situé sur foo(F1), et n’est
pas le point d’intersection de foo(F1) et Soo(F1).

QUATRIEME ETAPE: DERNIERE CONTRACTION

En appliquant le théoréme de Zariski 2 g3 nous obtenons un diagramme :

M
|
|
Fl___g_?,—_>l)2 E

Le lemme 9 (assertion 4) affirme que la premiere courbe contractée par m, est
la transformée stricte par 7; ou bien de f,, ou bien de s.,. Supposons que ce
soit la transformée de f.,. Alors apres avoir réalisé la suite d’éclatements 7
et avoir contracté cette courbe, la transformée de s., est d’auto-intersection
0 et ne pourra donc plus €tre contractée; ceci vient contredire la troisiéme
assertion du lemme 9. La premiere courbe contractée est donc la transformée
de s, que I’on peut contracter par avance pour obtenir le diagramme suivant : ‘

(D4) p2

Le morphisme 4 est I’application d’éclatement de diviseur exceptionnel s,
que 1’on peut choisir (puisqu’elle est définie modulo isomorphisme) de maniére - - -
a ce que le point sur lequel on contracte soit [1:0:0]. On a de plus

#1nd (g3) = #1ind (g4) .

e g A et



|
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CONCLUSION

On peut regrouper les quatre diagrammesh (D1),...,(D4) en un seul

¥2 ¥3

\
a1 /4 \ : // Y
v/
/ \ | /

avece
#ind (gs) = #ind (go) — 2n + 1 (ol n > 2).

Reste a vérifier que ¢ = @40 @30, 0wy est un automorphisme élémentaire.
Pour cela il suffit de constater que ¢ préserve le feuilletage y = constante,
autrement dit que ¢ préserve le pinceau des droites passant par [1 : 0 : 0]. Or
ceci est immédiat: 1’éclatement (; envoie les droites passant par [1 : 0 : 0]
sur les fibres de Fy, ¢, et @3 respectent les fibrations associées a F; et
F,, et enfin la contraction ¢4 envoie les fibres de F; sur les droites passant
par [1 : O : 0]. L’application g4 est donc un automorphisme de C? qui
s’obtient en composant g avec un automorphisme affine puis un automor-
phisme élémentaire, et satisfaisant 1’inégalité:

#ind (g4) < #ind (g) .

Par récurrence sur #ind (g), ceci termine la démonstration.

4. COMPLEMENTS

4.1 UN EXEMPLE

Considérons 1’automorphisme g suivant:

g: (x,7) = O+ B + ) + vy + ax?)’,y + ax?) avec «, B,y € C*.
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