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2. Applications birationnelles entre surfaces

Notre démarche pour démontrer le théorème de Jung est de considérer un

automorphisme polynomial de C2 comme une application birationnelle de P2

dans lui-même, et d'utiliser un théorème de structure classique pour ce type
d'applications. Parmi beaucoup de choix possibles nous avons pris comme
référence pour ce paragraphe les deux premiers chapitres de [4].

Par surface nous entendrons toujours une surface complexe algébrique
lisse, et par ouvert un ouvert de Zariski. Soient X et F deux surfaces; une

application rationnelle p: X — -» F est la donnée d'un morphisme d'un ouvert
U de X dans F, qui ne puisse pas s'étendre à un ouvert plus grand. Quand
U — X on a un vrai morphisme : on réserve à ce cas la notation p : X Y.

On montre facilement (voir [4, II.4]) que X \ U est un ensemble fini de

points. Ainsi une application rationnelle n'est pas une application au sens

strict, puisque qu'il existe un nombre fini de points hors du domaine de

définition. Cependant l'image d'une courbe est elle toujours définie : si C est

une courbe dans X, on définit la transformée stricte p(C) de C par p comme
l'adhérence de l'image par p de CHU. Bien noter que l'image d'une courbe

(disons irréductible) peut être un point.
Une application birationnelle entre A et F est la donnée d'une application

rationnelle p: X —+ Y qui induit un isomorphisme entre un ouvert de X et

un ouvert de F.

Exemple. Considérons l'application suivante de P2 dans lui-même (que

nous avons déjà rencontrée lors de l'énoncé du théorème de Noether) :

a : [x : y : z] — * \yz : xz : xy].

L'application a, dite application quadratique standard, est bien définie en

dehors des trois points [1:0:0], [0:1:0] et [0 : 0 : 1]. De plus a induit

un automorphisme de P2 privé des trois droites x 0, y 0 et & 0.
Nous laissons le lecteur vérifier par exemple que l'image par a de la droite

z 0 est le point [0 : 0 : 1], que l'image d'une droite passant par [0:0:1]
est encore une droite passant par [0 : 0 : 1], et que l'image d'une droite

générique est une conique passant par les trois points [1:0:0], [0:1:0]
et [0:0: 1].

Un exemple fondamental d'application birationnelle est l'application
d'éclatement en un point, que nous rappelons brièvement. Soit S une surface,
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et p un point de S. Il existe une surface S et un morphisme tt: S -A S tels

que

• E soit isomorphe à P1 ;

• 7t induise un isomorphisms de S \ E sur S \ p.
A isomorphisme près S et tt sont uniques. On dit que n est l'application

d'éclatement au point p, ou encore que S est l'éclaté de S en p ; la courbe

rationnelle E est appelée le diviseur exceptionnel de l'éclatement. Si C C S

est une courbe passant par p, on note C la transformée stricte de C, c'est-

à-dire l'adhérence de 7r-1(C\ {p}). Par transformée totale de C on désigne

le diviseur ir*C; par exemple si C est lisse en p on a 7r*C C -h E.

Rappelons que la surface S est munie d'une forme d'intersection: si D\,
£>2 sont deux diviseurs (i.e. des sommes finies Xi Ci où les Ci sont des

courbes irréductibles éventuellement singulières, et les À/ sont des entiers

relatifs), alors on peut définir un nombre d'intersection D\ .Z)2. Lorsque £>i

et D2 sont simplement deux courbes distinctes, D\.D2 correspond au nombre

de points d'intersection de ces deux courbes comptés avec multiplicité; D\ .D2
est dans ce cas positif ou nul. On peut étendre cette définition naturelle pour
donner un sens à l'intersection de deux diviseurs quelconques, en particulier on

peut parler de l'auto-intersection d'un diviseur (voir [4, th. 1.4]). Nous noterons
D2 au lieu de D .D l'auto-intersection d'un diviseur D. Bien noter que
l'autointersection d'une courbe peut être négative. Le nombre d'intersection possède
les propriétés agréables suivantes (D\, D2 et Z)3 sont trois diviseurs) :

• Si D2 et £>3 sont linéairement équivalents alors D\. £>2 D\. £>3 ;

• Avec les notations ci-dessus:

(7T*D1.7T*D2) (D1.D2);

(E. tt*£>i) 0.

Concernant l'action de l'éclatement sur les nombres d'intersection, nous
utiliserons de manière répétée les égalités suivantes qui découlent facilement
des propriétés que nous venons d'énoncer (C est toujours une courbe lisse

passant par p :

Formules 5. £2 -l;
-2 0c c2-î.

Précisons un point de vocabulaire. Suivant comment nous considérerons
l'application S Snous emploierons deux terminologies différentes: nous
dirons que l'on passe de Sà Sen éclatant le point p, et que l'on passe
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de S à S en contractant la courbe E. Dans la suite nous considérerons des

suites d'éclatements. En notant 7xPi l'application d'éclatement au point piy
nous aurons des applications de la forme où M et I sont deux
surfaces et p — irPn o • • • o ttPi (ici p\ EX et pour tout i > 2, pi appartient à la
surface obtenue après éclatement des points p\,... rPi-\). Dans cette situation

nous dirons que p\ est le premier point éclaté par p, ou inversement que le
diviseur exceptionnel En produit par 7rPn est la première courbe contractée

par p.
Les éclatements suffisent à décrire toutes les applications birationnelles

entre surfaces: c'est ce qu'exprime le résultat suivant (voir [4, 11.12]).

THÉORÈME 6 (Zariski, 1944). Toute application birationnelle entre deux

surfaces s'obtient comme une suite d'éclatements puis de contractions;
autrement dit si X, Y sont des surfaces et

g:X-+ Y

est une application birationnelle (qui n'est pas un isomorphisme), alors il existe

une surface M et des suites d'éclatements tt\ et tt2 tel que le diagramme
suivant commute:

M

Suivant Beauville nous attribuons ce théorème à Zariski. La preuve, qui
n'est pas très difficile, se décompose en deux étapes. La première étape
consiste à composer g avec une suite d'éclatements it 1 afin d'éliminer les

points d'indétermination. On obtient ainsi un diagramme commutatif:

M

où g est un morphisme. A noter que ce procédé peut s'appliquer à toute

application rationnelle entre surfaces (voir [4, II.7]); et peut également

s'adapter en dimension supérieure.

A contrario la deuxième étape, qui consiste à montrer que le morphisme

g est une suite de contractions (voir [4, 11.11]) est tout à fait particulière au
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cas d'un morphisme birationnel entre deux surfaces. On se ramène à montrer

la proposition suivante :

PROPOSITION 7. Soit g: M \-ï Y un morphisme birationnel entre surfaces.

Si y £ Y est un point où g~l n'est pas définie, alors g se factorise en

Y

M 1 >- Y
9

où g est l'éclatement en y, et h est un morphisme.

Nous allons proposer une preuve de cette proposition à l'aide d'un argument

élémentaire de géométrie différentielle qui peut éclairer la démonstration

donnée dans [4, II.8]. A noter qu'à aucun moment il n'est fait usage du critère

de Castelnuovo (contraction des courbes rationnelles d'auto-intersection —1).

Nous admettons le

LEMME 8 (voir [4, ILIO]). Si tp: X — -» Y est une application birationnelle

entre deux surfaces, et si x G X est un point où <p est non définie, alors il
existe une courbe C C Y telle que (p~l{C) — x.

Preuve de la proposition 7. Supposons que h g~1 o g ne soit pas un

morphisme, et soit x £ M un point où h n'est pas défini. Dans cette situation

d'une part g(x) y et g n'est pas localement inversible en x; d'autre part
il existe une courbe dans Y qui est contractée sur x par hrx. Cette courbe

ne peut être que le diviseur exceptionnel E associé à a. Considérons p et q
deux points distincts de E où h~l est bien définie, et C, C' deux germes de

courbes lisses transverses à E en p et q respectivement. Alors <r(C) et a(Cf)
sont deux germes de courbes lisses transverses en y, qui sont image par g
de deux germes de courbes en x. La différentielle de g en x est donc de

rang 2, ce qui vient contredire le fait que g n'est pas localement inversible
en x (voir figure 1).

Avant de commencer la preuve du théorème de Jung nous précisons
quelques points de vocabulaire et expliquons dans quel contexte nous ferons

usage du théorème de Zariski. Nous appelerons points d'indétermination de

g les points que l'on éclate lors de la construction de tt\ ; ce sont donc
des points qui appartiennent ou bien à I ou bien à des éclatés de X. Les
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Supposer h non définie en x conduit à une contradiction

points d'indétermination contenus dans X seront dits points d'indétermination

propres (classiquement on dit que les autres points sont dans des voisinages
infiniment proches des points d'indétermination propres). Le nombre de points
d'indétermination de g (propres ou non) sera noté #ind(g).

Remarque. A noter que cette définition est cohérente car les suites

d'éclatements tt\ et iï2 produites par le théorème sont uniquement déterminées

par g (à isomorphisme près). La suite tt\ s'obtient précisément en éclatant

successivement les points où g n'est pas définie. De manière symétrique la
suite 7T2 est déterminée par les points où g_1 n'est pas définie. Bien sûr on

pourrait rallonger artificiellement les suites tt\ et 7r2 en éclatant des points
où g et g~x sont bien définies. Il est cependant implicite dans notre énoncé

du théorème de Zariski que nous considérons les suites ix\ et 712 minimales,

au sens où elles vérifient la propriété universelle suivante (voir [2]) :

Soient (Ç\ : M' Ht X et (p2 : M' i-> Y deux morphismes birationnels tels

que <f2 — 9 ° Vi - Alors il existe un unique morphisme h: Mf M qui fasse

commuter le diagramme:

M'
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Dans toute la suite nous utiliserons le théorème de Zariski seulement dans

un cas bien particulier: nous considérerons g: X —> P2 provenant d'un auto-

morphisme polynomial de C2. Nous entendons par là que 1 on s est donné

une partition X — C2 U D où D est une réunion de courbes irréductibles

(appelée diviseur à l'infini), une partition P2 C2 U L où L est une droite

(droite à l'infini), et que g induit un isomorphisms de X \ D dans P2 \L.
Cette situation entraîne des contraintes fortes sur les points d'indétermination

de g ; c'est ce qu'exprime le lemme suivant:

LEMME 9. Soient X une surface et g une application birationnelle de X
dans P2 provenant d'un automorphisme polynomial de C2. Nous supposons

de plus que g n'est pas un morphisme. Alors

1. g admet un seul point d'indétermination propre, situé sur le diviseur à

l'infini de X;
2. g admet des points d'indétermination p\,. ,ps (s > 1) tels que

(a) p\ soit le point d'indétermination propre;
(b) pour tout 2,... ,s, le point pt soit situé sur le diviseur produit en

éclatant pi-\ ;

3. chacune des courbes irréductibles contenues dans le diviseur à l'infini de

X est contractée sur un point par g ;

4. la première courbe contractée par 1x2 est la transformée stricte d'une

courbe contenue dans le diviseur à l'infini de X ;

5. en particulier, si X P2, la première courbe contractée par 1x2 est la

transformée de la droite à l'infini "à la source".

Preuve. Nous savons (lemme 8) que si p est un point d'indétermination

propre de g alors il existe une courbe qui est contractée sur p par g~l.
Dans notre situation la seule courbe de P2 candidate à être contractée est

la droite à l'infini; il y a donc au plus un point d'indétermination propre

pour g dans X. Comme nous supposons que g n'est pas un morphisme, g
admet exactement un point d'indétermination propre. La deuxième affirmation
découle alors par une récurrence immédiate. De même chaque courbe dans le
diviseur à l'infini dans X est ou bien contractée sur un point, ou bien envoyée

sur la droite à l'infini dans P2. Comme g~l contracte la droite à l'infini sur

un point, cette deuxième possibilité est exclue : nous avons montré la troisième
assertion. De ce qui précède il découle que le diviseur à l'infini dans M est
constitué du diviseur d'auto-intersection —1 produit en éclatant ps, des autres
diviseurs produits au cours de la suite d'éclatements, tous d'auto-intersection
inférieure ou égale à -2, et enfin de la transformée stricte du diviseur à
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l'infini dans X (ici nous avons utilisé les formules 5). Comme la première
courbe contractée par tt2 doit être d'auto-intersection —1, et ne peut être la
dernière courbe produite par tt\ (car cela contredirait le fait que ps est un
point d'indétermination), on obtient bien que la première courbe contractée par
7T2 est la transformée stricte d'une courbe contenue dans le diviseur à l'infini
de X. La dernière assertion n'est qu'une reformulation de la quatrième, dans

le cas où X P2.

3. Preuve du théorème de Jung

Nous considérons g un automorphisme polynomial de C2, que nous

prolongeons en une application birationnelle (toujours notée g) de P2 dans

lui-même. Si g s'écrit

g: (v,y) i-> (gi(x,y),g2(x,y))

et que n est le degré de g (c'est-à-dire le plus grand des degrés de g\ et g2),
alors en coordonnées homogènes l'extension de g à P2 s'écrit

g: \x : y : z] — > [.zng\(x/z,y/z) : zng2(x/z,y/z) : zn].

La droite à l'infini dans P2 est ici la droite d'équation z 0. Nous voulons

montrer que g s'écrit comme une composée d'automorphismes affines et

élémentaires. La preuve va s'effectuer par récurrence sur le nombre #ind(g)
de points d'indétermination de g.

D'après le lemme 9 (assertion 1) le prolongement g: P2 ---> P2 admet

un unique point d'indétermination propre situé sur la droite à l'infini. En

composant g par un automorphisme affine nous pouvons nous* ramener au

cas où ce point est [1 : 0 : 0]. Autrement dit nous avons un diagramme
commutatif :

P2

où a est affine et go admet [1 : 0 : 0] comme point d'indétermination. Bien
sûr on a

# ind (go) # ind (g).
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