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29 , S. LAMY

2. APPLICATIONS BIRATIONNELLES ENTRE SURFACES

Notre démarche pour démontrer le théoréme de Jung est de considérer un
automorphisme polynomial de C? comme une application birationnelle de P?
dans lui-méme, et d’utiliser un théoréme de structure classique pour ce type
d’applications. Parmi beaucoup de choix possibles nous avons pris comme
référence pour ce paragraphe les deux premiers chapitres de [4].

Par surface nous entendrons toujours une surface complexe algébrique
lisse, et par ouvert un ouvert de Zariski. Soient X et ¥ deux surfaces; une
application rationnelle ¢: X --+ Y est la donnée d’un morphisme d’un ouvert
U de X dans Y, qui ne puisse pas s’étendre a un ouvert plus grand. Quand
U =X on a un vrai morphisme: on réserve a ce cas la notation ¢: X — Y.
On montre facilement (voir [4, IL.4]) que X \ U est un ensemble fini de
points. Ainsi une application rationnelle n’est pas une application au sens
strict, puisque qu’il existe un nombre fini de points hors du domaine de
définition. Cependant I’image d’une courbe est elle toujours définie: s1 C est
une courbe dans X, on définit la transformée stricte ¢(C) de C par ¢ comme
I’adhérence de 1’image par ¢ de CNU. Bien noter que I’'image d’une courbe
(disons 1irréductible) peut €tre un point.

Une application birationnelle entre X et ¥ est la donnée d’une application

rationnelle ¢: X --» ¥ qui induit un isomorphisme entre un ouvert de X et
un ouvert de Y.

EXEMPLE. Considérons I’application suivante de P? dans lui-méme (que
nous avons déja rencontrée lors de 1’énoncé du théoreme de Noether):

a:[x:y:z]f—+ [yz : xz : xy].

L’application o, dite application quadratique standard, est bien définie. en
dehors des trois points [1:0:0], [0:1:0] et [0:0:1]. De plus o induit
un automorphisme de P? privé des trois droites x = 0, y = 0 et z = 0.
Nous laissons le lecteur vérifier par exemple que I’image par o de la droite
7z =20 est le point [0:0: 1], que 'image d’une droite passant par [0:0: 1]
est encore une droite passant par [0 : O : 1], et que I'image d’une droite
générique est une conique passant par les trois points [1:0:0], [0:1:0]
et [0:0:1].

Un exemple fondamental d’application birationnelle est I’application
d’éclatement en un point, que nous rappelons brievement. Soit S une surface,
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et p un point de S. Il existe une surface S et un morphisme 7: S — S tels
que

e E=7"Y(p) soit isomorphe a P!;

e 7 induise un isomorphisme de S \E sur S\p.

A isomorphisme pres S et 7 sont uniques. On dit que 7 est 1’application
d’éclatement au point p, ou encore que S est ’éclaté de S en p; la courbe
rationnelle E est appelée le diviseur exceptionnel de I’éclatement. Si C C S
est une courbe passant par p, on note C la transformée stricte de C, c’est-
a-dire 1’adhérence de w~!(C \ {p}). Par transformée totale de C on désigne
le diviseur 7*C; par exemple si C est lisse en p on a 7°C = C+E.

Rappelons que la surface S est munie d’une forme d’intersection : si Dy,
D, sont deux diviseurs (i.e. des sommes finies »_ \;C; ou les C; sont des
courbes irréductibles éventuellement singulieres, et les \; sont des entiers
relatifs), alors on peut définir un nombre d’intersection D;.D,. Lorsque D;
et D, sont simplement deux courbes distinctes, D; . D, correspond au nombre
de points d’intersection de ces deux courbes comptés avec multiplicité; D1 . D,
est dans ce cas positif ou nul. On peut étendre cette définition naturelle pour
donner un sens a 1’intersection de deux diviseurs quelconques, en particulier on
peut parler de 1’auto-intersection d’un diviseur (voir [4, th. 1.4]). Nous noterons
D? au lieu de D .D D’auto-intersection d’un diviseur D. Bien noter que 1’auto-
intersection d’une courbe peut €tre négative. Le nombre d’intersection possede
les propriétés agréables suivantes (D;, Dy et Dz sont trois diviseurs):

e Si D, et D5 sont linéairement équivalents alors D .D, = D .Ds;
e Avec les notations ci-dessus:

(7*Dy . 7*Dy) = (Dy . Dy);
(E.7*Dy)=0.

Concernant I’action de I’éclatement sur les nombres d’intersection, nous
utiliserons de maniere répétée les égalités suivantes qui découlent facilement
des propriétés que nous venons d’énoncer (C est toujours une courbe lisse
passant par p):

FORMULES 5. FE?=—1:

~2
C =C*-1.

Précisons un point de vocabulaire. Suivant comment nous considérerons
I’application S + § nous emploierons deux terminologies différentes: nous

o~

dirons que I’on passe de § a § en éclatant le point p, et que I'on passe
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de S a S en contractant la courbe E. Dans la suite nous considérerons des
suites d’éclatements. En notant m, 1’application d’éclatement au point p;,
nous aurons des applications de la forme ¢: M +— X, o M et X sont deux
surfaces et ¢ = m, o---om, (ici p; € X et pour tout i > 2, p; appartient a la
surface obtenue apres éclatement des points pi,...,p;—1). Dans cette situation
nous dirons que p; est le premier point éclaté par ¢, ou inversement que le
diviseur exceptionnel E, produit par 7, est la premiere courbe contractée
par .

Les éclatements suffisent a décrire toutes les applications birationnelles
entre surfaces: c’est ce qu’exprime le résultat suivant (voir [4, I1.12]).

THEOREME 6 (Zariski, 1944). Toute application birationnelle entre deux
surfaces s’obtient comme une suite d’éclatements puis de contractions,
autrement dit si X, Y sont des surfaces et

g: X -——Y

est une application birationnelle (qui n’est pas un isomorphisme), alors il existe
une surface M et des suites d’éclatements m et m, tel que le diagramme
suivant commute :

M
N\
O el §

Suivant Beauville nous attribuons ce théoreme a Zariski. La preuve, qui
n’est pas tres difficile, se décompose en deux étapes. La premiere étape
consiste a composer g avec une suite d’éclatements 7; afin d’éliminer les
points d’indétermination. On obtient ainsi un diagramme commutatif:

ou g est un morphisme. A noter que ce procédé peut s’appliquer a toute
application rationnelle entre surfaces (voir [4, IL7]); et peut également
s’adapter en dimension supérieure.

A contrario la deuxieme étape, qui consiste a montrer que le morphisme
g est une suite de contractions (voir [4, II.11]) est tout a fait particuliere au
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cas d’un morphisme birationnel entre deux surfaces. On se rameéne a montrer
la proposition suivante :

PROPOSITION 7. Soit §: M +— Y un morphisme birationnel entre surfaces.
Si y €Y est un point oit §~' n’est pas définie, alors g se factorise en

Y
2
M - Y
g

o o est [’éclatement en y, et h est un morphisme.

Nous allons proposer une preuve de cette proposition a I’aide d’un argument
élémentaire de géométrie différentielle qui peut éclairer la démonstration
donnée dans [4, I1.8]. A noter qu’a aucun moment il n’est fait usage du criteére
de Castelnuovo (contraction des courbes rationnelles d’auto-intersection —1).
Nous admettons le

LEMME 8 (voir [4, II.10]). Si ¢: X ——» Y est une application birationnelle
entre deux surfaces, et si x € X est un point ou @ est non définie, alors il
existe une courbe C C Y telle que ¢~ (C) = x.

Preuve de la proposition 7. Supposons que & = o~ ! o § ne soit pas un
morphisme, et soit x € M un point ou A n’est pas défini. Dans cette situation
d’une part g(x) =y et g n’est pas localement inversible en x; d’autre part
il existe une courbe dans Y qui est contractée sur x par A~'. Cette courbe
ne peut étre que le diviseur exceptionnel E associ€é a o. Considérons p et g
deux points distincts de E ou h~! est bien définie, et C, C' deux germes de
courbes lisses transverses a E en p et g respectivement. Alors o(C) et o(C’)
sont deux germes de courbes lisses transverses en y, qui sont image par §
de deux germes de courbes en x. La différentielle de g en x est donc de

rang 2, ce qui vient contredire le fait que § n’est pas localement inversible
en x (voir figure 1). [

Avant de commencer la preuve du théoreme de Jung nous précisons
quelques points de vocabulaire et expliquons dans quel contexte nous ferons
usage du théoreme de Zariski. Nous appelerons points d’indétermination de
g les points que 1’on éclate lors de la construction de m;; ce sont donc
des points qui appartiennent ou bien a X ou bien a des éclatés de X. Les
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Y |C’ C
g p “E
7 .
h 7
= o(C)
M Y
h—l(cl) ?— y
(o)) o(C)

FIGURE 1

Supposer 4 non définie en x conduit a une contradiction

points d’indétermination contenus dans X seront dits points d’indétermination
propres (classiquement on dit que les autres points sont dans des voisinages
infiniment proches des points d’indétermination propres). Le nombre de points
d’indétermination de g (propres ou non) sera noté #ind (g).

REMARQUE. A noter que cette définition est cohérente car les suites
d’éclatements 7, et m, produites par le théoreme sont uniquement déterminées
par g (a isomorphisme pres). La suite 7, s’obtient précisément en éclatant
successivement les points ou g n’est pas définie. De maniere symétrique la
suite 7, est déterminée par les points ol ¢g~! n’est pas définie. Bien siir on
pourrait rallonger artificiellement les suites m; et 7 en éclatant des points
ou g et g—! sont bien définies. Il est cependant implicite dans notre énoncé
du théoréme de Zariski que nous considérons les suites 7; et m minimales,
au sens ou elles vérifient la propriété universelle suivante (voir [2]):

Soient ¢y: M +— X et w,: M’ +— Y deux morphismes birationnels tels
que @y = go ;. Alors il existe un unique morphisme h: M’ +— M qui fasse
commuter le diagramme :
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Dans toute la suite nous utiliserons le théoréme de Zariski seulement dans
un cas bien particulier: nous considérerons g: X --» P? provenant d’un auto-
morphisme polynomial de C?. Nous entendons par la que I’on s’est donné
une partition X = C>UD ou D est une réunion de courbes irréductibles
(appelée diviseur A I'infini), une partition P> = C* UL ou L est une droite
(droite & Iinfini), et que ¢ induit un isomorphisme de X \ D dans P2\ L.
Cette situation entraine des contraintes fortes sur les points d’indétermination
de g; c’est ce qu’exprime le lemme suivant:

LEMME 9. Soient X une surface et g une application birationnelle de X
dans P? provenant d’un automorphisme polynomial de C2. Nous supposons
de plus que g n’est pas un morphisme. Alors
1. ¢ admet un seul point d’indétermination propre, situé sur le diviseur a

Uinfini de X ;

2. g admet des points d’indétermination py,...,ps (s > 1) tels que
(a) py soit le point d’indétermination propre;
(b) pour tout i =2,...,s, le point p; soit situé sur le diviseur produit en
éclatant p;_1 ;
3. chacune des courbes irréductibles contenues dans le diviseur a [’infini de
X est contractée sur un point par g ;

4. la premiére courbe contractée par T, est la transformée stricte d’une
courbe contenue dans le diviseur a 'infini de X ;

5. en particulier, si X = P?, la premiére courbe contractée par T, est la
transformée de la droite a Uinfini “a la source”.

Preuve. Nous savons (lemme 8) que si p est un point d’indétermination
propre de g alors il existe une courbe qui est contractée sur p par g !.
Dans notre situation la seule courbe de P? candidate a étre contractée est
la droite a I'infini; i1l y a donc au plus un point d’indétermination propre
pour g dans X. Comme nous supposons que g n’est pas un morphisme, g
admet exactement un point d’indétermination propre. La deuxieme affirmation
découle alors par une récurrence immédiate. De méme chaque courbe dans le
diviseur a I’infini dans X est ou bien contractée sur un point, ou bien envoyée
sur la droite A Iinfini dans P?. Comme ¢! contracte la droite & I’infini sur
un point, cette deuxieme possibilité est exclue : nous avons montré la troisiéme
assertion. De ce qui précede il découle que le diviseur a I'infini dans M est
constitué du diviseur d’auto-intersection —1 produit en éclatant p,, des autres
diviseurs produits au cours de la suite d’éclatements, tous d’auto-intersection
inférieure ou égale a —2, et enfin de la transformée stricte du diviseur 2
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I'infini dans X (ici nous avons utilisé les formules 5). Comme la premiere
courbe contractée par m, doit étre d’auto-intersection —1, et ne peut étre la
derniere courbe produite par m; (car cela contredirait le fait que p, est un
point d’indétermination), on obtient bien que la premiere courbe contractée par
7y est la transformée stricte d’une courbe contenue dans le diviseur & I’infini

de X. La derniere assertion n’est qu’une reformulation de la quatrieme, dans
le cas o X =P2. [

3. PREUVE DU THEOREME DE JUNG

Nous considérons g un automorphisme polynomial de C?, que nous
prolongeons en une application birationnelle (toujours notée g) de P? dans
lui-méme. Si g s’écrit

g: (x,y) = (g1(x,¥), g2(x,¥))

et que n est le degré de g (c’est-a-dire le plus grand des degrés de g; et g»),
alors en coordonnées homogénes 1’extension de g a P? s’écrit

g:[x:y:z] - [f'a1(x/2,y/2) : Z'92(x/2,y/2) : 7'].

La droite 4 I’infini dans P? est ici la droite d’équation z = 0. Nous voulons
montrer que ¢ s’écrit comme une composée d’automorphismes affines et
élémentaires. La preuve va s’effectuer par récurrence sur le nombre #ind (g)
de points d’indétermination de g.

D’aprés le lemme 9 (assertion 1) le prolongement g: P? --» P? admet
un unique point d’indétermination propre situ€ sur la droite a l'infini. En
composant g par un automorphisme affine nous pouvons nous ramener au
cas ou ce point est [1 : O : 0]. Autrement dit nous avons un diagramme
commutatif :

ou a est affine et go admet [1:0: 0] comme point d’indétermination. Bien
sir on a

#ind (go) = #1nd (g) .
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