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UNE PREUVE GÉOMÉTRIQUE DU THÉORÈME DE JUNG

par Stéphane Lamy

1. Introduction

L'espace affine complexe Cn possède les qualités propres aux objets

mathématiques fascinants : de nature très simple, il se trouve être à la base

d'une multitude de problèmes intéressants et difficiles. En particulier le groupe
Aut[Cn] des automorphismes polynomiaux de Cn est loin d'être bien compris.
L'étude de ces automorphismes est bien sûr intimement liée aux recherches

autour de la fameuse Conjecture du Jacobien (voir [12]). De nombreuses

autres questions relatives au groupe Aut[Cn] sont naturelles : on peut chercher
à déterminer les sous-groupes finis, les sous-groupes de Lie, les sous-groupes
linéarisables... On trouvera dans [21] un bel exposé de ces problématiques.
Par ailleurs il est apparu récemment que ces automorphismes fournissent
des exemples de systèmes dynamiques ayant un comportement très riche.
Concernant ces problèmes un article fondateur est [13]; on pourra se reporter
à [35] pour un panorama des progrès accomplis ces dix dernières années. Les

questions que nous venons d'évoquer sont délicates en général, sans parler de

la possibilité d'étudier ce qu'il advient lorsqu'on remplace C par un corps
quelconque, voire par un anneau. Cependant il existe un cas particulier pour
lequel on possède de nombreux résultats : c'est celui de la dimension 2. On
dispose en effet d'un théorème de structure, énoncé par H.W.E. Jung dès

1942, qui donne un système de générateurs pour Aut[C2].
Nous noterons A le groupe des automorphismes affines de C2, i.e. le

groupe des éléments de Aut[C2] qui se prolongent en des automorphismes
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holomorphes de P2 ; et nous appellerons E (pour "élémentaire", suivant les

notations de [13]) le sous-groupe de Aut[C2] constitué des automorphismes
qui préservent le pinceau des droites y — constante. Autrement dit :

^ {(*, y) ^ fax + biy + ci, a2x + b2y + c2);

at, bi, et e C, a\b2 - a2bi ± 0} ;

E {(x,y)^(ax + P(y),ßy + y)- a,/? EC*, y e C, Pe C[X]}

THÉORÈME 1 (Jung, 1942). Le groupe Aut[C2] des automorphismes poly-
nomiaux de C2 est engendré par les automorphismes affines et élémentaires.

Quelques années après Jung, ce résultat était précisé par W. Van der Kulk
de la manière suivante :

THÉORÈME 2 (Van der Kulk, 1953). Etant donné un corps k (de

caractéristique quelconque, algébriquement clos ou non), le groupe des

automorphismes polynomiaux de k2 est engendré par les automorphismes
affines et élémentaires à coefficients dans k. De plus Aut[&2] est le produit
amalgamé de ces deux sous-groupes.

Après les articles de Jung [19] et Van der Kulk [22] de nombreuses autres

preuves, utilisant des techniques différentes, ont été proposées. L'objet de cet
article étant de donner encore une nouvelle preuve, nous commençons, afin

d'expliquer nos motivations, par un rapide survol des preuves disponibles dans

la littérature. D'une manière générale, l'idée commune à toutes ces preuves est

de procéder par récurrence sur le degré; ainsi étant donné un automorphisme

g: (x,y) (gi(x,y),g2(x,y))

où gi, g2 sont des polynômes de degrés respectifs d\ et d2, il s'agit de montrer

que l'on peut abaisser le degré de g en composant successivement par un

automorphisme affine puis par un automorphisme élémentaire. Précisément,

en composant par un automorphisme affine on peut supposer que d\ est

strictement supérieur à d2 ; il reste alors à montrer que la composante

homogène de plus haut degré de g\ est un multiple de celle de g2, ce

qui se ramène assez facilement à montrer que d\ est un multiple de d2.

La preuve la plus voisine de la nôtre (c'est-à-dire de nature géométrique) est

sans doute celle de M. Nagata [28], qui s'inspire de l'article de Van der Kulk.
Antérieurement W. Engel [11] avait proposé une preuve, laquelle fut reprise

par A. Gutwirth [17]. Nagata commente laconiquement ces deux preuves en
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disant qu'elles lui semblent difficiles à lire. Quoi qu'il en soit, l'idée ici est de

prolonger g en une application birationnelle de P2 et de considérer la courbe

C préimage par g d'une droite générique. On obtient alors des informations

sur les degrés d\ et d2 en étudiant la singularité de C à l'infini.
Dans l'optique de donner une preuve valable sur tout corps, L. Makar-

Limanov [23] a proposé une alternative à la preuve de Van der Kulk en adoptant

une approche complètement algébrique. L'idée est d'introduire un nouveau

degré en accordant des poids différents aux variables v et y, en fonction

des degrés associés à l'application inverse de g. Notons que quelques années

plus tard ce même auteur propose par une approche similaire une description
du groupe des automorphismes d'une large classe de surfaces affines [24].

Une preuve publiée par W. Dicks en 1983 [9] est une version quelque peu

simplifiée de l'argument de Makar-Limanov; on trouvera une rédaction précise
de cette preuve dans le livre de P.M. Cohn [8].

Une approche légèrement différente a été proposée par R. Rentschler. Il
est assez aisé une fois le théorème de Jung-Van der Kulk acquis de montrer

que toute représentation algébrique de (C, +) dans Aut[C2] est donnée à

conjugaison près par un automorphisme élémentaire. Rentschler emprunte le

chemin inverse: il démontre d'abord cette propriété puis remarque que l'on
peut en déduire le théorème de Jung. En effet, à l'automorphisme g on

peut associer la dérivation localement nilpotente d/dg\. Cette preuve, publiée
comme note au CRAS en 1968 [31], a été reprise en détail récemment par
L. M. Druzkowski et J. Gurycz [10].

Une preuve dite élémentaire est publiée en 1988 par J.H. McKay et
S.S. Wang [26]; elle repose sur une formule d'inversion. Les auteurs montrent

I que l'application g~l peut s'exprimer à l'aide d'un calcul de résultants mettant
en jeu les polynômes à une variable #i(0,0, g2(0, t), g2(t, 0). La

; relation souhaitée entre d\ et d2 en découle.

A l'opposé, on pourra trouver une preuve "sophistiquée" dans le livre de

K. Matsuki [25]. L'idée ici est d'utiliser le cadre fourni par la théorie de

Mori pour formuler une preuve du théorème de Jung, avec l'espoir que cette
démarche permette ensuite d'attaquer l'étude jusqu'alors quasi-inaccessible de
la structure du groupe Aut[Cn] pour n> 3.

Citons enfin une dernière approche : dans [1], S.S. Abhyankar et T. T. Moh
démontrent que deux plongements biréguliers de C dans C2 diffèrent par un
automorphisme de C2, et remarquent que leur preuve implique le théorème de

Jung. Divers auteurs ont proposé de nouvelles preuves de ce résultat; on peut
citer les articles récents de R. V. Gurjar [16], E. Casas-Alvero [6] et E. Artal-
Bartolo [3], tous trois proposant des démonstrations de nature géométrique.
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Nous allons voir cependant que si l'objectif est seulement d'obtenir une preuve
du résultat de Jung il est possible de donner une preuve géométrique beaucoup
plus concise.

A l'origine de notre travail se trouve un postulat fort naturel: le théorème
de Jung est un résultat de géométrie birationnelle. Tout automorphisme de

C2 peut en effet se prolonger en une application birationnelle de P2. Dans

ce contexte il nous semble qu'effectuer une récurrence sur le degré n'est pas
la démarche la plus naturelle; le nombre de points d'indétermination s'avère
être une quantité plus facile à manipuler. Ceci n'était pas vraiment le point de

vue de Jung, malgré son titre : "Sur les transformations birationnelles entières j

du plan". Cependant, dans une note qui semble être passée inaperçue, O.-H. j

Keller [20] réagit au travail de Jung en remarquant, sans donner de détails,

qu'il est certainement possible de donner une preuve simplifiée en utilisant les j

résultats connus sur les applications birationnelles de P2. Plus tard, dans un j

court article I. R. Shafarevich [32] énonce le théorème de Jung en indiquant

que la démonstration repose sur la possibilité de décomposer toute application
birationnelle entre surfaces compactes comme une suite d'éclatements (c'est
le théorème 6 énoncé au paragraphe suivant); malheureusement il ne semble

jamais avoir eu l'occasion de publier une telle preuve (dans le complément
à son article [34] Shafarevich se contente de renvoyer à un travail de

M.H. Gizatullin et V.l. Danilov [14] qui de par son ambition de généralité
maximale s'avère de lecture difficile). Enfin, récemment S. Orevkov [30]
signale que l'on peut retrouver le théorème de Jung à partir d'un travail de

A. G. Vitushkin, mais à nouveau les détails ne sont pas explicités.
Le théorème de Jung est en effet à mettre en parallèle avec un résultat

classique généralement attribué à M. Noether [29] :

THÉORÈME 3 (Noether, 1872). Toute application birationnelle du plan pro-
jectif P2 se décompose à l'aide d'automorphismes linéaires et de T involution

quadratique standard

a: {x : y : z] \yz : xz : xy].

Il semble que la première preuve complète de cet énoncé soit en fait due à

G. Castelnuovo [7], qui déduit le théorème de Noether du résultat intermédiaire
suivant :

THÉORÈME 4 (Castelnuovo, 1901). Toute application birationnelle du plan
projectif P2 s'écrit comme une composition d'automorphismes linéaires et

d'applications dites de Jonquières.
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A propos des applications de type de Jonquières disons simplement que ce

sont les applications de degré n admettant un point base de multiplicité n— 1 ;

le fait remarquable est que les automorphismes polynomiaux qui s'étendent en

des applications de type de Jonquières sont précisément (à conjugaison affine

près) les automorphismes élémentaires. Ainsi le théorème de Jung peut être

vu comme un cas spécial du résultat de Castelnuovo. On pourra trouver dans

[27] une preuve du théorème 3 très proche en esprit de la preuve du théorème

de Jung que nous proposons dans cet article. Il peut sembler paradoxal que le

théorème de Castelnuovo remonte à 1901, alors que celui de Jung qui s'avère

être un cas particulier plus facile (en particulier nous n'aurons pas besoin

de la notion de multiplicité d'un point d'indétermination qu'utilise Nagata),
remonte lui à 1942. Une réponse possible est que Castelnuovo tout comme
ses contemporains ne se soit jamais préoccupé de ce problème.

On peut résumer notre démarche en disant que nous nous sommes proposés
de donner une preuve du théorème de Jung telle qu'aurait pu la concevoir un
géomètre du début du 20e siècle ; ou encore, la preuve qui nous paraît se cacher

derrière les remarques de Keller et Shafarevich citées plus haut. Notre preuve
a le mérite d'être concise, de ne faire intervenir aucun calcul, et de mettre en
lumière pourquoi ce résultat est propre à la dimension 2. La méthode étant
de nature géométrique, il nous a semblé plus transparent de nous cantonner
au cas classique (à savoir que nous travaillons sur le corps C); cependant
cette restriction n'est en rien essentielle ainsi que nous le remarquons en fin
d'article.

L'article est organisé comme suit.

Le second paragraphe regroupe les résultats de géométrie birationnelle que
nous utilisons; ceux-ci sont tout à fait élémentaires et contenus dans votre
livre favori d'introduction à la géométrie algébrique (qui est probablement
[15], [18] ou [33]).

La preuve proprement dite du théorème de Jung est détaillée dans le
troisième paragraphe.

Enfin, dans un dernier paragraphe nous illustrons notre méthode par un
exemple puis nous démontrons le théorème de Van der Kulk. Nous indiquons
d'abord comment retrouver géométriquement que Aut[C2] est le produit
amalgamé des sous-groupes affine et élémentaire. Bien noter que ceci est
essentiellement une remarque triviale (qui certes se révèle cruciale pour les
applications), et que le résultat réellement délicat est celui contenu dans
l'énoncé de Jung. Pour finir, nous montrons comment notre preuve s'adapte
facilement au cas d'un corps quelconque.
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