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UNE PREUVE GEOMETRIQUE DU THEOREME DE JUNG

par Stéphane LAMY

1. INTRODUCTION

L’espace affine complexe C" posséde les qualités propres aux objets
mathématiques fascinants: de nature tres simple, il se trouve €tre a la base
d’une multitude de problemes intéressants et difficiles. En particulier le groupe
Aut[C"] des automorphismes polynomiaux de C" est loin d’étre bien compris.
[’étude de ces automorphismes est bien sir intimement liée aux recherches
autour de la fameuse Conjecture du Jacobien (voir [12]). De nombreuses
autres questions relatives au groupe Aut[C"] sont naturelles: on peut chercher
a déterminer les sous-groupes finis, les sous-groupes de Lie, les sous-groupes
linéarisables. .. On trouvera dans [21] un bel exposé de ces problématiques.
Par ailleurs il est apparu récemment que ces automorphismes fournissent
des exemples de systemes dynamiques ayant un comportement treés riche.
Concernant ces problemes un article fondateur est [13]; on pourra se reporter
a [35] pour un panorama des progres accomplis ces dix dernieres années. Les
questions que nous venons d’évoquer sont délicates en général, sans parler de
la possibilité d’étudier ce qu’il advient lorsqu’on remplace C par un corps
quelconque, voire par un anneau. Cependant il existe un cas particulier pour
lequel on possede de nombreux résultats: c’est celui de la dimension 2. On
dispose en effet d’'un théoréme de structure, énoncé par H. W.E. Jung dés
1942, qui donne un systeme de générateurs pour Aut[C?].

Nous noterons A le groupe des automorphismes affines de C?, i.e. le
groupe des éléments de Aut[C?] qui se prolongent en des automorphismes
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holomorphes de P?; et nous appellerons E (pour “élémentaire”, suivant les
notations de [13]) le sous-groupe de Aut[C?] constitué des automorphismes
qui préservent le pinceau des droites y = constante. Autrement dit:

A= {(x,y) = (a1x + b1y + c1, a2x + byy + ¢2);
a;,bi,c; € C, ayby — ayby # 0} ;
E={(x,y) — (ax+PQy),fy+7); «,f€C*, yeC, PecC[X]}.

THEOREME 1 (Jung, 1942). Le groupe Aut[C?] des automorphismes poly-
nomiaux de C* est engendré par les automorphismes affines et élémentaires.

Quelques années apres Jung, ce résultat était précisé par W. Van der Kulk
de la maniére suivante:

THEOREME 2 (Van der Kulk, 1953). Erant donné un corps k (de
caractéristique quelconque, algébriquement clos ou non), le groupe des
automorphismes polynomiaux de k*> est engendré par les automorphismes
affines et élémentaires a coefficients dans k. De plus Aut[k?] est le produit
amalgamé de ces deux sous-groupes.

Apres les articles de Jung [19] et Van der Kulk [22] de nombreuses autres
preuves, utilisant des techniques différentes, ont ét€ proposées. L’ objet de cet
article étant de donner encore une nouvelle preuve, nous commengons, afin
d’expliquer nos motivations, par un rapide survol des preuves disponibles dans
la littérature. D’une maniere générale, I'idée commune a toutes ces preuves est
de procéder par récurrence sur le degré; ainsi étant donné un automorphisme

g: (x,y) = (1%, ), g2(x,¥))

ou g1, g, sont des polyndmes de degrés respectifs d; et d,, il s’agit de montrer
que I'on peut abaisser le degré de g en composant successivement par un
automorphisme affine puis par un automorphisme élémentaire. Précisément,
en composant par un automorphisme affine on peut supposer que d; est
strictement supérieur a dp; il reste alors a montrer que la composante
homogene de plus haut degré de ¢; est un multiple de celle de g,, ce
qui se ramene assez facilement a montrer que d; est un multiple de d,.

La preuve la plus voisine de la notre (c’est-a-dire de nature géométrique) est
sans doute celle de M. Nagata [28], qui s’inspire de I’article de Van der Kulk.
Antérieurement W. Engel [11] avait proposé une preuve, laquelle fut reprise
par A. Gutwirth [17]. Nagata commente laconiquement ces deux preuves en




UNE PREUVE GEOMETRIQUE DU THEOREME DE JUNG 293

disant qu’elles lui semblent difficiles a lire. Quoi qu’il en soit, Iidée ici est de
prolonger g en une application birationnelle de P? et de considérer la courbe
C préimage par g d’une droite générique. On obtient alors des informations
sur les degrés d; et dy en étudiant la singularité de C a I'infini.

Dans I’optique de donner une preuve valable sur tout corps, L. Makar-
Limanov [23] a proposé une alternative a la preuve de Van der Kulk en adoptant
une approche complétement algébrique. L’idée est d’introduire un nouveau
degré en accordant des poids différents aux variables x et y, en fonction
des degrés associés a I’application inverse de g. Notons que quelques années
plus tard ce méme auteur propose par une approche similaire une description
du groupe des automorphismes d’une large classe de surfaces affines [24].
Une preuve publiée par W. Dicks en 1983 [9] est une version quelque peu
simplifiée de I’argument de Makar-Limanov; on trouvera une rédaction précise
de cette preuve dans le livre de P.M. Cohn [8].

Une approche 1égerement différente a été proposée par R. Rentschler. Il
est assez aisé une fois le théoreme de Jung-Van der Kulk acquis de montrer
que toute représentation algébrique de (C,+) dans Aut[C?] est donnée a
conjugaison pres par un automorphisme €lémentaire. Rentschler emprunte le
chemin inverse: i1l démontre d’abord cette propri€été puis remarque que 1’on
peut en déduire le théoreme de Jung. En effet, a 1’automorphisme g on
peut associer la dérivation localement nilpotente 0/0g; . Cette preuve, publiée
comme note au CRAS en 1968 [31], a été reprise en détail récemment par
L. M. Druzkowski et J. Gurycz [10].

Une preuve dite élémentaire est publiée en 1988 par J.H. McKay et
S.S. Wang [26]; elle repose sur une formule d’inversion. Les auteurs montrent
que I’application ¢~! peut s’exprimer a I’aide d’un calcul de résultants mettant
en jeu les polyndmes a une variable ¢;(0,1), ¢1(z,0), ¢2(0,1), ¢-(z,0). La
relation souhaitée entre d; et d» en découle.

A T’oppos€, on pourra trouver une preuve “sophistiquée” dans le livre de
K. Matsuki [25]. L’idée ici est d’utiliser le cadre fourni par la théorie de
Mori pour formuler une preuve du théoréme de Jung, avec I’espoir que cette
démarche permette ensuite d’attaquer I’étude jusqu’alors quasi-inaccessible de
la structure du groupe Aut[C"] pour n > 3.

Citons enfin une derniere approche : dans [1], S.S. Abhyankar et T. T. Moh
démontrent que deux plongements biréguliers de C dans C? different par un
automorphisme de C?, et remarquent que leur preuve implique le théoréeme de
Jung. Divers auteurs ont proposé de nouvelles preuves de ce résultat; on peut
citer les articles récents de R.V. Gurjar [16], E. Casas-Alvero [6] et E. Artal-
Bartolo [3], tous trois proposant des démonstrations de nature géométrique.
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Nous allons voir cependant que si I’objectif est seulement d’obtenir une preuve
du résultat de Jung il est possible de donner une preuve géométrique beaucoup
plus concise.

A Torigine de notre travail se trouve un postulat fort naturel: le théoreme
de Jung est un résultat de géométrie birationnelle. Tout automorphisme de
C? peut en effet se prolonger en une application birationnelle de P?. Dans
ce contexte il nous semble qu’effectuer une récurrence sur le degré n’est pas
la démarche la plus naturelle; le nombre de points d’indétermination s’avere
étre une quantité plus facile a manipuler. Ceci n’était pas vraiment le point de
vue de Jung, malgré son titre: “Sur les transformations birationnelles entieres
du plan”. Cependant, dans une note qui semble étre passée inapercue, O.-H.
Keller [20] réagit au travail de Jung en remarquant, sans donner de détails,
qu’il est certainement possible de donner une preuve simplifiée en utilisant les
résultats connus sur les applications birationnelles de P?. Plus tard, dans un
court article I. R. Shafarevich [32] énonce le théoreme de Jung en indiquant
que la démonstration repose sur la possibilité de décomposer toute application
birationnelle entre surfaces compactes comme une suite d’éclatements (c’est
le théoreme 6 énoncé au paragraphe suivant); malheureusement il ne semble
jamais avoir eu l’occasion de publier une telle preuve (dans le complément
a son article [34] Shafarevich se contente de renvoyer a un travail de
M. H. Gizatullin et V.I. Danilov [14] qui de par son ambition de généralité
maximale s’avere de lecture difficile). Enfin, récemment S. Orevkov [30]
signale que 1’on peut retrouver le théoréeme de Jung a partir d’un travail de
A.G. Vitushkin, mais a nouveau les détails ne sont pas explicités.

Le théoreme de Jung est en effet a mettre en parallele avec un résultat
classique généralement attribué a M. Noether [29]:

THEOREME 3 (Noether, 1872). Toute application birationnelle du plan pro-
jectif P> se décompose a ’aide d’automorphismes linéaires et de I’involution
quadratique standard

o:[x:y:zl--» [yz:xz:xy].

Il semble que la premiere preuve complete de cet énoncé soit en fait due a
G. Castelnuovo [7], qui déduit le théoreme de Noether du résultat intermédiaire
suivant:

THEOREME 4 (Castelnuovo, 1901). Toute application birationnelle du plan
projectif P* s’écrit comme une composition d’automorphismes linéaires et
d’applications dites de Jonquieres.




UNE PREUVE GEOMETRIQUE DU THEOREME DE JUNG 295

A propos des applications de type de Jonquiéres disons simplement que ce
sont les applications de degré n admettant un point base de multiplicité n—1;
le fait remarquable est que les automorphismes polynomiaux qui s’étendent en
des applications de type de Jonquieres sont précisément (a conjugaison affine
prés) les automorphismes élémentaires. Ainsi le théoréme de Jung peut étre
vu comme un cas spécial du résultat de Castelnuovo. On pourra trouver dans
[27] une preuve du théoréme 3 tres proche en esprit de la preuve du théoreme
de Jung que nous proposons dans cet article. Il peut sembler paradoxal que le
théoreme de Castelnuovo remonte a 1901, alors que celui de Jung qui s’avere
étre un cas particulier plus facile (en particulier nous n’aurons pas besoin
de la notion de multiplicité d’un point d’indétermination qu’utilise Nagata),
remonte lui a 1942. Une réponse possible est que Castelnuovo tout comme
ses contemporains ne se soit jamais préoccupé de ce probleme.

On peut résumer notre démarche en disant que nous nous sommes proposes
de donner une preuve du théoreme de Jung telle qu’aurait pu la concevoir un
géometre du début du 20° siecle; ou encore, la preuve qui nous parait se cacher
derriere les remarques de Keller et Shafarevich citées plus haut. Notre preuve
a le mérite d’étre concise, de ne faire intervenir aucun calcul, et de mettre en
lumiere pourquoi ce résultat est propre a la dimension 2. La méthode étant
de nature géométrique, il nous a semblé plus transparent de nous cantonner
au cas classique (a savoir que nous travaillons sur le corps C); cependant
cette restriction n’est en rien essentielle ainsi que nous le remarquons en fin
d’article.

[’article est organisé comme suit.

Le second paragraphe regroupe les résultats de géométrie birationnelle que
nous utilisons; ceux-ci sont tout a fait élémentaires et contenus dans votre
livre favori d’introduction a la géométrie algébrique (qui est probablement
[15], [18] ou [33]).

La preuve proprement dite du théoréme de Jung est détaillée dans le
troisieme paragraphe.

Enfin, dans un dernier paragraphe nous illustrons notre méthode par un
exemple puis nous démontrons le théoréme de Van der Kulk. Nous indiquons
d’abord comment retrouver géométriquement que Aut[C?] est le produit
amalgamé des sous-groupes affine et élémentaire. Bien noter que ceci est
essentiellement une remarque triviale (qui certes se révele cruciale pour les
applications), et que le résultat réellement délicat est celui contenu dans
I"énoncé de Jung. Pour finir, nous montrons comment notre preuve s’adapte
facilement au cas d’un corps quelconque.
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