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L'Enseignement Mathématique, t. 48 (2002), p. 291—315

UNE PREUVE GÉOMÉTRIQUE DU THÉORÈME DE JUNG

par Stéphane Lamy

1. Introduction

L'espace affine complexe Cn possède les qualités propres aux objets

mathématiques fascinants : de nature très simple, il se trouve être à la base

d'une multitude de problèmes intéressants et difficiles. En particulier le groupe
Aut[Cn] des automorphismes polynomiaux de Cn est loin d'être bien compris.
L'étude de ces automorphismes est bien sûr intimement liée aux recherches

autour de la fameuse Conjecture du Jacobien (voir [12]). De nombreuses

autres questions relatives au groupe Aut[Cn] sont naturelles : on peut chercher
à déterminer les sous-groupes finis, les sous-groupes de Lie, les sous-groupes
linéarisables... On trouvera dans [21] un bel exposé de ces problématiques.
Par ailleurs il est apparu récemment que ces automorphismes fournissent
des exemples de systèmes dynamiques ayant un comportement très riche.
Concernant ces problèmes un article fondateur est [13]; on pourra se reporter
à [35] pour un panorama des progrès accomplis ces dix dernières années. Les

questions que nous venons d'évoquer sont délicates en général, sans parler de

la possibilité d'étudier ce qu'il advient lorsqu'on remplace C par un corps
quelconque, voire par un anneau. Cependant il existe un cas particulier pour
lequel on possède de nombreux résultats : c'est celui de la dimension 2. On
dispose en effet d'un théorème de structure, énoncé par H.W.E. Jung dès

1942, qui donne un système de générateurs pour Aut[C2].
Nous noterons A le groupe des automorphismes affines de C2, i.e. le

groupe des éléments de Aut[C2] qui se prolongent en des automorphismes
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holomorphes de P2 ; et nous appellerons E (pour "élémentaire", suivant les

notations de [13]) le sous-groupe de Aut[C2] constitué des automorphismes
qui préservent le pinceau des droites y — constante. Autrement dit :

^ {(*, y) ^ fax + biy + ci, a2x + b2y + c2);

at, bi, et e C, a\b2 - a2bi ± 0} ;

E {(x,y)^(ax + P(y),ßy + y)- a,/? EC*, y e C, Pe C[X]}

THÉORÈME 1 (Jung, 1942). Le groupe Aut[C2] des automorphismes poly-
nomiaux de C2 est engendré par les automorphismes affines et élémentaires.

Quelques années après Jung, ce résultat était précisé par W. Van der Kulk
de la manière suivante :

THÉORÈME 2 (Van der Kulk, 1953). Etant donné un corps k (de

caractéristique quelconque, algébriquement clos ou non), le groupe des

automorphismes polynomiaux de k2 est engendré par les automorphismes
affines et élémentaires à coefficients dans k. De plus Aut[&2] est le produit
amalgamé de ces deux sous-groupes.

Après les articles de Jung [19] et Van der Kulk [22] de nombreuses autres

preuves, utilisant des techniques différentes, ont été proposées. L'objet de cet
article étant de donner encore une nouvelle preuve, nous commençons, afin

d'expliquer nos motivations, par un rapide survol des preuves disponibles dans

la littérature. D'une manière générale, l'idée commune à toutes ces preuves est

de procéder par récurrence sur le degré; ainsi étant donné un automorphisme

g: (x,y) (gi(x,y),g2(x,y))

où gi, g2 sont des polynômes de degrés respectifs d\ et d2, il s'agit de montrer

que l'on peut abaisser le degré de g en composant successivement par un

automorphisme affine puis par un automorphisme élémentaire. Précisément,

en composant par un automorphisme affine on peut supposer que d\ est

strictement supérieur à d2 ; il reste alors à montrer que la composante

homogène de plus haut degré de g\ est un multiple de celle de g2, ce

qui se ramène assez facilement à montrer que d\ est un multiple de d2.

La preuve la plus voisine de la nôtre (c'est-à-dire de nature géométrique) est

sans doute celle de M. Nagata [28], qui s'inspire de l'article de Van der Kulk.
Antérieurement W. Engel [11] avait proposé une preuve, laquelle fut reprise

par A. Gutwirth [17]. Nagata commente laconiquement ces deux preuves en
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disant qu'elles lui semblent difficiles à lire. Quoi qu'il en soit, l'idée ici est de

prolonger g en une application birationnelle de P2 et de considérer la courbe

C préimage par g d'une droite générique. On obtient alors des informations

sur les degrés d\ et d2 en étudiant la singularité de C à l'infini.
Dans l'optique de donner une preuve valable sur tout corps, L. Makar-

Limanov [23] a proposé une alternative à la preuve de Van der Kulk en adoptant

une approche complètement algébrique. L'idée est d'introduire un nouveau

degré en accordant des poids différents aux variables v et y, en fonction

des degrés associés à l'application inverse de g. Notons que quelques années

plus tard ce même auteur propose par une approche similaire une description
du groupe des automorphismes d'une large classe de surfaces affines [24].

Une preuve publiée par W. Dicks en 1983 [9] est une version quelque peu

simplifiée de l'argument de Makar-Limanov; on trouvera une rédaction précise
de cette preuve dans le livre de P.M. Cohn [8].

Une approche légèrement différente a été proposée par R. Rentschler. Il
est assez aisé une fois le théorème de Jung-Van der Kulk acquis de montrer

que toute représentation algébrique de (C, +) dans Aut[C2] est donnée à

conjugaison près par un automorphisme élémentaire. Rentschler emprunte le

chemin inverse: il démontre d'abord cette propriété puis remarque que l'on
peut en déduire le théorème de Jung. En effet, à l'automorphisme g on

peut associer la dérivation localement nilpotente d/dg\. Cette preuve, publiée
comme note au CRAS en 1968 [31], a été reprise en détail récemment par
L. M. Druzkowski et J. Gurycz [10].

Une preuve dite élémentaire est publiée en 1988 par J.H. McKay et
S.S. Wang [26]; elle repose sur une formule d'inversion. Les auteurs montrent

I que l'application g~l peut s'exprimer à l'aide d'un calcul de résultants mettant
en jeu les polynômes à une variable #i(0,0, g2(0, t), g2(t, 0). La

; relation souhaitée entre d\ et d2 en découle.

A l'opposé, on pourra trouver une preuve "sophistiquée" dans le livre de

K. Matsuki [25]. L'idée ici est d'utiliser le cadre fourni par la théorie de

Mori pour formuler une preuve du théorème de Jung, avec l'espoir que cette
démarche permette ensuite d'attaquer l'étude jusqu'alors quasi-inaccessible de
la structure du groupe Aut[Cn] pour n> 3.

Citons enfin une dernière approche : dans [1], S.S. Abhyankar et T. T. Moh
démontrent que deux plongements biréguliers de C dans C2 diffèrent par un
automorphisme de C2, et remarquent que leur preuve implique le théorème de

Jung. Divers auteurs ont proposé de nouvelles preuves de ce résultat; on peut
citer les articles récents de R. V. Gurjar [16], E. Casas-Alvero [6] et E. Artal-
Bartolo [3], tous trois proposant des démonstrations de nature géométrique.
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Nous allons voir cependant que si l'objectif est seulement d'obtenir une preuve
du résultat de Jung il est possible de donner une preuve géométrique beaucoup
plus concise.

A l'origine de notre travail se trouve un postulat fort naturel: le théorème
de Jung est un résultat de géométrie birationnelle. Tout automorphisme de

C2 peut en effet se prolonger en une application birationnelle de P2. Dans

ce contexte il nous semble qu'effectuer une récurrence sur le degré n'est pas
la démarche la plus naturelle; le nombre de points d'indétermination s'avère
être une quantité plus facile à manipuler. Ceci n'était pas vraiment le point de

vue de Jung, malgré son titre : "Sur les transformations birationnelles entières j

du plan". Cependant, dans une note qui semble être passée inaperçue, O.-H. j

Keller [20] réagit au travail de Jung en remarquant, sans donner de détails,

qu'il est certainement possible de donner une preuve simplifiée en utilisant les j

résultats connus sur les applications birationnelles de P2. Plus tard, dans un j

court article I. R. Shafarevich [32] énonce le théorème de Jung en indiquant

que la démonstration repose sur la possibilité de décomposer toute application
birationnelle entre surfaces compactes comme une suite d'éclatements (c'est
le théorème 6 énoncé au paragraphe suivant); malheureusement il ne semble

jamais avoir eu l'occasion de publier une telle preuve (dans le complément
à son article [34] Shafarevich se contente de renvoyer à un travail de

M.H. Gizatullin et V.l. Danilov [14] qui de par son ambition de généralité
maximale s'avère de lecture difficile). Enfin, récemment S. Orevkov [30]
signale que l'on peut retrouver le théorème de Jung à partir d'un travail de

A. G. Vitushkin, mais à nouveau les détails ne sont pas explicités.
Le théorème de Jung est en effet à mettre en parallèle avec un résultat

classique généralement attribué à M. Noether [29] :

THÉORÈME 3 (Noether, 1872). Toute application birationnelle du plan pro-
jectif P2 se décompose à l'aide d'automorphismes linéaires et de T involution

quadratique standard

a: {x : y : z] \yz : xz : xy].

Il semble que la première preuve complète de cet énoncé soit en fait due à

G. Castelnuovo [7], qui déduit le théorème de Noether du résultat intermédiaire
suivant :

THÉORÈME 4 (Castelnuovo, 1901). Toute application birationnelle du plan
projectif P2 s'écrit comme une composition d'automorphismes linéaires et

d'applications dites de Jonquières.
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A propos des applications de type de Jonquières disons simplement que ce

sont les applications de degré n admettant un point base de multiplicité n— 1 ;

le fait remarquable est que les automorphismes polynomiaux qui s'étendent en

des applications de type de Jonquières sont précisément (à conjugaison affine

près) les automorphismes élémentaires. Ainsi le théorème de Jung peut être

vu comme un cas spécial du résultat de Castelnuovo. On pourra trouver dans

[27] une preuve du théorème 3 très proche en esprit de la preuve du théorème

de Jung que nous proposons dans cet article. Il peut sembler paradoxal que le

théorème de Castelnuovo remonte à 1901, alors que celui de Jung qui s'avère

être un cas particulier plus facile (en particulier nous n'aurons pas besoin

de la notion de multiplicité d'un point d'indétermination qu'utilise Nagata),
remonte lui à 1942. Une réponse possible est que Castelnuovo tout comme
ses contemporains ne se soit jamais préoccupé de ce problème.

On peut résumer notre démarche en disant que nous nous sommes proposés
de donner une preuve du théorème de Jung telle qu'aurait pu la concevoir un
géomètre du début du 20e siècle ; ou encore, la preuve qui nous paraît se cacher

derrière les remarques de Keller et Shafarevich citées plus haut. Notre preuve
a le mérite d'être concise, de ne faire intervenir aucun calcul, et de mettre en
lumière pourquoi ce résultat est propre à la dimension 2. La méthode étant
de nature géométrique, il nous a semblé plus transparent de nous cantonner
au cas classique (à savoir que nous travaillons sur le corps C); cependant
cette restriction n'est en rien essentielle ainsi que nous le remarquons en fin
d'article.

L'article est organisé comme suit.

Le second paragraphe regroupe les résultats de géométrie birationnelle que
nous utilisons; ceux-ci sont tout à fait élémentaires et contenus dans votre
livre favori d'introduction à la géométrie algébrique (qui est probablement
[15], [18] ou [33]).

La preuve proprement dite du théorème de Jung est détaillée dans le
troisième paragraphe.

Enfin, dans un dernier paragraphe nous illustrons notre méthode par un
exemple puis nous démontrons le théorème de Van der Kulk. Nous indiquons
d'abord comment retrouver géométriquement que Aut[C2] est le produit
amalgamé des sous-groupes affine et élémentaire. Bien noter que ceci est
essentiellement une remarque triviale (qui certes se révèle cruciale pour les
applications), et que le résultat réellement délicat est celui contenu dans
l'énoncé de Jung. Pour finir, nous montrons comment notre preuve s'adapte
facilement au cas d'un corps quelconque.
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2. Applications birationnelles entre surfaces

Notre démarche pour démontrer le théorème de Jung est de considérer un

automorphisme polynomial de C2 comme une application birationnelle de P2

dans lui-même, et d'utiliser un théorème de structure classique pour ce type
d'applications. Parmi beaucoup de choix possibles nous avons pris comme
référence pour ce paragraphe les deux premiers chapitres de [4].

Par surface nous entendrons toujours une surface complexe algébrique
lisse, et par ouvert un ouvert de Zariski. Soient X et F deux surfaces; une

application rationnelle p: X — -» F est la donnée d'un morphisme d'un ouvert
U de X dans F, qui ne puisse pas s'étendre à un ouvert plus grand. Quand
U — X on a un vrai morphisme : on réserve à ce cas la notation p : X Y.

On montre facilement (voir [4, II.4]) que X \ U est un ensemble fini de

points. Ainsi une application rationnelle n'est pas une application au sens

strict, puisque qu'il existe un nombre fini de points hors du domaine de

définition. Cependant l'image d'une courbe est elle toujours définie : si C est

une courbe dans X, on définit la transformée stricte p(C) de C par p comme
l'adhérence de l'image par p de CHU. Bien noter que l'image d'une courbe

(disons irréductible) peut être un point.
Une application birationnelle entre A et F est la donnée d'une application

rationnelle p: X —+ Y qui induit un isomorphisme entre un ouvert de X et

un ouvert de F.

Exemple. Considérons l'application suivante de P2 dans lui-même (que

nous avons déjà rencontrée lors de l'énoncé du théorème de Noether) :

a : [x : y : z] — * \yz : xz : xy].

L'application a, dite application quadratique standard, est bien définie en

dehors des trois points [1:0:0], [0:1:0] et [0 : 0 : 1]. De plus a induit

un automorphisme de P2 privé des trois droites x 0, y 0 et & 0.
Nous laissons le lecteur vérifier par exemple que l'image par a de la droite

z 0 est le point [0 : 0 : 1], que l'image d'une droite passant par [0:0:1]
est encore une droite passant par [0 : 0 : 1], et que l'image d'une droite

générique est une conique passant par les trois points [1:0:0], [0:1:0]
et [0:0: 1].

Un exemple fondamental d'application birationnelle est l'application
d'éclatement en un point, que nous rappelons brièvement. Soit S une surface,
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et p un point de S. Il existe une surface S et un morphisme tt: S -A S tels

que

• E soit isomorphe à P1 ;

• 7t induise un isomorphisms de S \ E sur S \ p.
A isomorphisme près S et tt sont uniques. On dit que n est l'application

d'éclatement au point p, ou encore que S est l'éclaté de S en p ; la courbe

rationnelle E est appelée le diviseur exceptionnel de l'éclatement. Si C C S

est une courbe passant par p, on note C la transformée stricte de C, c'est-

à-dire l'adhérence de 7r-1(C\ {p}). Par transformée totale de C on désigne

le diviseur ir*C; par exemple si C est lisse en p on a 7r*C C -h E.

Rappelons que la surface S est munie d'une forme d'intersection: si D\,
£>2 sont deux diviseurs (i.e. des sommes finies Xi Ci où les Ci sont des

courbes irréductibles éventuellement singulières, et les À/ sont des entiers

relatifs), alors on peut définir un nombre d'intersection D\ .Z)2. Lorsque £>i

et D2 sont simplement deux courbes distinctes, D\.D2 correspond au nombre

de points d'intersection de ces deux courbes comptés avec multiplicité; D\ .D2
est dans ce cas positif ou nul. On peut étendre cette définition naturelle pour
donner un sens à l'intersection de deux diviseurs quelconques, en particulier on

peut parler de l'auto-intersection d'un diviseur (voir [4, th. 1.4]). Nous noterons
D2 au lieu de D .D l'auto-intersection d'un diviseur D. Bien noter que
l'autointersection d'une courbe peut être négative. Le nombre d'intersection possède
les propriétés agréables suivantes (D\, D2 et Z)3 sont trois diviseurs) :

• Si D2 et £>3 sont linéairement équivalents alors D\. £>2 D\. £>3 ;

• Avec les notations ci-dessus:

(7T*D1.7T*D2) (D1.D2);

(E. tt*£>i) 0.

Concernant l'action de l'éclatement sur les nombres d'intersection, nous
utiliserons de manière répétée les égalités suivantes qui découlent facilement
des propriétés que nous venons d'énoncer (C est toujours une courbe lisse

passant par p :

Formules 5. £2 -l;
-2 0c c2-î.

Précisons un point de vocabulaire. Suivant comment nous considérerons
l'application S Snous emploierons deux terminologies différentes: nous
dirons que l'on passe de Sà Sen éclatant le point p, et que l'on passe
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de S à S en contractant la courbe E. Dans la suite nous considérerons des

suites d'éclatements. En notant 7xPi l'application d'éclatement au point piy
nous aurons des applications de la forme où M et I sont deux
surfaces et p — irPn o • • • o ttPi (ici p\ EX et pour tout i > 2, pi appartient à la
surface obtenue après éclatement des points p\,... rPi-\). Dans cette situation

nous dirons que p\ est le premier point éclaté par p, ou inversement que le
diviseur exceptionnel En produit par 7rPn est la première courbe contractée

par p.
Les éclatements suffisent à décrire toutes les applications birationnelles

entre surfaces: c'est ce qu'exprime le résultat suivant (voir [4, 11.12]).

THÉORÈME 6 (Zariski, 1944). Toute application birationnelle entre deux

surfaces s'obtient comme une suite d'éclatements puis de contractions;
autrement dit si X, Y sont des surfaces et

g:X-+ Y

est une application birationnelle (qui n'est pas un isomorphisme), alors il existe

une surface M et des suites d'éclatements tt\ et tt2 tel que le diagramme
suivant commute:

M

Suivant Beauville nous attribuons ce théorème à Zariski. La preuve, qui
n'est pas très difficile, se décompose en deux étapes. La première étape
consiste à composer g avec une suite d'éclatements it 1 afin d'éliminer les

points d'indétermination. On obtient ainsi un diagramme commutatif:

M

où g est un morphisme. A noter que ce procédé peut s'appliquer à toute

application rationnelle entre surfaces (voir [4, II.7]); et peut également

s'adapter en dimension supérieure.

A contrario la deuxième étape, qui consiste à montrer que le morphisme

g est une suite de contractions (voir [4, 11.11]) est tout à fait particulière au
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cas d'un morphisme birationnel entre deux surfaces. On se ramène à montrer

la proposition suivante :

PROPOSITION 7. Soit g: M \-ï Y un morphisme birationnel entre surfaces.

Si y £ Y est un point où g~l n'est pas définie, alors g se factorise en

Y

M 1 >- Y
9

où g est l'éclatement en y, et h est un morphisme.

Nous allons proposer une preuve de cette proposition à l'aide d'un argument

élémentaire de géométrie différentielle qui peut éclairer la démonstration

donnée dans [4, II.8]. A noter qu'à aucun moment il n'est fait usage du critère

de Castelnuovo (contraction des courbes rationnelles d'auto-intersection —1).

Nous admettons le

LEMME 8 (voir [4, ILIO]). Si tp: X — -» Y est une application birationnelle

entre deux surfaces, et si x G X est un point où <p est non définie, alors il
existe une courbe C C Y telle que (p~l{C) — x.

Preuve de la proposition 7. Supposons que h g~1 o g ne soit pas un

morphisme, et soit x £ M un point où h n'est pas défini. Dans cette situation

d'une part g(x) y et g n'est pas localement inversible en x; d'autre part
il existe une courbe dans Y qui est contractée sur x par hrx. Cette courbe

ne peut être que le diviseur exceptionnel E associé à a. Considérons p et q
deux points distincts de E où h~l est bien définie, et C, C' deux germes de

courbes lisses transverses à E en p et q respectivement. Alors <r(C) et a(Cf)
sont deux germes de courbes lisses transverses en y, qui sont image par g
de deux germes de courbes en x. La différentielle de g en x est donc de

rang 2, ce qui vient contredire le fait que g n'est pas localement inversible
en x (voir figure 1).

Avant de commencer la preuve du théorème de Jung nous précisons
quelques points de vocabulaire et expliquons dans quel contexte nous ferons

usage du théorème de Zariski. Nous appelerons points d'indétermination de

g les points que l'on éclate lors de la construction de tt\ ; ce sont donc
des points qui appartiennent ou bien à I ou bien à des éclatés de X. Les
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Supposer h non définie en x conduit à une contradiction

points d'indétermination contenus dans X seront dits points d'indétermination

propres (classiquement on dit que les autres points sont dans des voisinages
infiniment proches des points d'indétermination propres). Le nombre de points
d'indétermination de g (propres ou non) sera noté #ind(g).

Remarque. A noter que cette définition est cohérente car les suites

d'éclatements tt\ et iï2 produites par le théorème sont uniquement déterminées

par g (à isomorphisme près). La suite tt\ s'obtient précisément en éclatant

successivement les points où g n'est pas définie. De manière symétrique la
suite 7T2 est déterminée par les points où g_1 n'est pas définie. Bien sûr on

pourrait rallonger artificiellement les suites tt\ et 7r2 en éclatant des points
où g et g~x sont bien définies. Il est cependant implicite dans notre énoncé

du théorème de Zariski que nous considérons les suites ix\ et 712 minimales,

au sens où elles vérifient la propriété universelle suivante (voir [2]) :

Soient (Ç\ : M' Ht X et (p2 : M' i-> Y deux morphismes birationnels tels

que <f2 — 9 ° Vi - Alors il existe un unique morphisme h: Mf M qui fasse

commuter le diagramme:

M'
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Dans toute la suite nous utiliserons le théorème de Zariski seulement dans

un cas bien particulier: nous considérerons g: X —> P2 provenant d'un auto-

morphisme polynomial de C2. Nous entendons par là que 1 on s est donné

une partition X — C2 U D où D est une réunion de courbes irréductibles

(appelée diviseur à l'infini), une partition P2 C2 U L où L est une droite

(droite à l'infini), et que g induit un isomorphisms de X \ D dans P2 \L.
Cette situation entraîne des contraintes fortes sur les points d'indétermination

de g ; c'est ce qu'exprime le lemme suivant:

LEMME 9. Soient X une surface et g une application birationnelle de X
dans P2 provenant d'un automorphisme polynomial de C2. Nous supposons

de plus que g n'est pas un morphisme. Alors

1. g admet un seul point d'indétermination propre, situé sur le diviseur à

l'infini de X;
2. g admet des points d'indétermination p\,. ,ps (s > 1) tels que

(a) p\ soit le point d'indétermination propre;
(b) pour tout 2,... ,s, le point pt soit situé sur le diviseur produit en

éclatant pi-\ ;

3. chacune des courbes irréductibles contenues dans le diviseur à l'infini de

X est contractée sur un point par g ;

4. la première courbe contractée par 1x2 est la transformée stricte d'une

courbe contenue dans le diviseur à l'infini de X ;

5. en particulier, si X P2, la première courbe contractée par 1x2 est la

transformée de la droite à l'infini "à la source".

Preuve. Nous savons (lemme 8) que si p est un point d'indétermination

propre de g alors il existe une courbe qui est contractée sur p par g~l.
Dans notre situation la seule courbe de P2 candidate à être contractée est

la droite à l'infini; il y a donc au plus un point d'indétermination propre

pour g dans X. Comme nous supposons que g n'est pas un morphisme, g
admet exactement un point d'indétermination propre. La deuxième affirmation
découle alors par une récurrence immédiate. De même chaque courbe dans le
diviseur à l'infini dans X est ou bien contractée sur un point, ou bien envoyée

sur la droite à l'infini dans P2. Comme g~l contracte la droite à l'infini sur

un point, cette deuxième possibilité est exclue : nous avons montré la troisième
assertion. De ce qui précède il découle que le diviseur à l'infini dans M est
constitué du diviseur d'auto-intersection —1 produit en éclatant ps, des autres
diviseurs produits au cours de la suite d'éclatements, tous d'auto-intersection
inférieure ou égale à -2, et enfin de la transformée stricte du diviseur à
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l'infini dans X (ici nous avons utilisé les formules 5). Comme la première
courbe contractée par tt2 doit être d'auto-intersection —1, et ne peut être la
dernière courbe produite par tt\ (car cela contredirait le fait que ps est un
point d'indétermination), on obtient bien que la première courbe contractée par
7T2 est la transformée stricte d'une courbe contenue dans le diviseur à l'infini
de X. La dernière assertion n'est qu'une reformulation de la quatrième, dans

le cas où X P2.

3. Preuve du théorème de Jung

Nous considérons g un automorphisme polynomial de C2, que nous

prolongeons en une application birationnelle (toujours notée g) de P2 dans

lui-même. Si g s'écrit

g: (v,y) i-> (gi(x,y),g2(x,y))

et que n est le degré de g (c'est-à-dire le plus grand des degrés de g\ et g2),
alors en coordonnées homogènes l'extension de g à P2 s'écrit

g: \x : y : z] — > [.zng\(x/z,y/z) : zng2(x/z,y/z) : zn].

La droite à l'infini dans P2 est ici la droite d'équation z 0. Nous voulons

montrer que g s'écrit comme une composée d'automorphismes affines et

élémentaires. La preuve va s'effectuer par récurrence sur le nombre #ind(g)
de points d'indétermination de g.

D'après le lemme 9 (assertion 1) le prolongement g: P2 ---> P2 admet

un unique point d'indétermination propre situé sur la droite à l'infini. En

composant g par un automorphisme affine nous pouvons nous* ramener au

cas où ce point est [1 : 0 : 0]. Autrement dit nous avons un diagramme
commutatif :

P2

où a est affine et go admet [1 : 0 : 0] comme point d'indétermination. Bien
sûr on a

# ind (go) # ind (g).
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Nous allons maintenant montrer qu'il existe un diagramme

(fi y" \ 90°<P
1

/ \/

où cp est le prolongement d'un automorphisme élémentaire de C2, et tel que

Notre démarche va consister à considérer le diagramme donné par le théorème

de Zariski1 :

et à réordonner les éclatements mis en jeu dans tt\ et 7T2- Ainsi, au cours

de quatre étapes que nous allons maintenant détailler, <p va être construit en

réalisant certains éclatements de la suite iï\ et certaines contractions de la

suite 7T2-

Première étape: éclatement de [1:0:0]
Le point [1:0:0] est le premier point éclaté par ; considérons

donc la surface F\ obtenue en éclatant P2 au point [1:0:0]. Cette

surface est un compactifié de C2 et est naturellement munie d'une fibration
rationnelle correspondant aux droites 3; constante. Le diviseur à l'infini est

constitué de deux courbes rationnelles (i.e. isomorphes à P1) s'intersectant
transversalement en un point. On distingue d'une part la transformée stricte
de la droite à l'infini dans P2 ; c'est une fibre que nous noterons /oo. D'autre

part on a le diviseur exceptionnel de l'éclatement, qui est une section pour
la fibration : nous la noterons ^. On a bien sûr (appliquer les formules 5)

/Iq — 0 et s1^ — 1. Plus généralement pour tout n > 1 nous noterons Fn

un compactifié de C2 muni d'une fibration rationnelle, tel que le diviseur à

l'infini soit constitué de deux courbes rationnelles transverses : une fibre
et une section Soo d'auto-intersection —n. Ces surfaces sont classiquement

# ind (g0 o (p *) < # ind (g0).

M

90
^P2

*) Chaque fois que nous utiliserons le théorème de Zariski nous noterons M, tri et 71*2 la
surface et les suites d'éclatements produites, le contexte permettant d'éviter toute confusion.
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appelées surfaces de Hirzebruch; nous ne présupposons aucune connaissance

particulière les concernant. Un point de notation: nous écrirons Soo(F„) et

foo(Fn) quand plus d'une surface de Hirzebruch seront mises en jeu.

Revenons à l'application go. Considérons le diagramme commutatif:

(Dl) F!
m \ 9\

/ \/ A

où (pest l'application d'éclatement au point [1 : 0 : 0]. On a

# ind (g\) — # ind (go) — 1.

Reprenons maintenant le diagramme donné par le théorème de Zariski
appliqué à go. D'après le lemme 9 (assertion 5) la première courbe contractée

par 7T2, qui doit être une courbe dans M d'auto-intersection —1, est la
transformée de la droite à l'infini. Celle-ci correspond à la fibre /oo dans F\.
Or dans F\ on a /^ 0. L'auto-intersection de cette courbe doit encore
diminuer d'un, donc le point d'indétermination propre p de g\ est situé sur

/oo. Par ailleurs on sait (lemme 9, assertion 2) que ce même point p appartient
à la courbe produite par l'éclatement ^f1, à savoir Finalement p est

précisément le point d'intersection de /^ et Soo.

Deuxième étape : récurrence ascendante

Dans le raisonnement qui va suivre nous utiliserons des applications entre

surfaces réglées généralement appelées "transformations élémentaires" (cependant

nous n'emploierons pas cette terminologie, ce qui évitera d'ailleurs toute

confusion avec les éléments du groupe E). Ces transformations sont la
composée d'un éclatement et d'une contraction. Plus précisément soit S une

surface réglée, c'est-à-dire une surface munie d'une fibration /: S i-A C où

C est une courbe, et telle que toutes les fibres de / soient isomorphes
à P1. Considérons p G S et notons F. la fibre contenant p. La transformation

élémentaire au point p est l'application birationnelle qui consiste à

éclater le point p (produisant ainsi un diviseur exceptionnel F') puis à

contracter la transformée stricte de F. On obtient ainsi une nouvelle surface

réglée S'.
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Dans les preuves des lemmes 10 et 11 nous allons utiliser de telles

transformations, pour des surfaces réglées de base C isomorphe à P1.

Lemme 10. Soit n>\, et h une application birationnelle de Fn dans P2

qui provient d'un automorphisme polynomial de C2. Supposons que l'unique

point d'indétermination propre de h soit le point p intersection de fooiFn) et

Soo(Fn). Considérons le diagramme commutatif

Fn-\-\

<P * X
x h'

/ \/
Fn

h

où (p consiste à éclater p puis à contracter la transformée stricte de f^.
Alors l'application birationnelle h' h o <p~l satisfait les deux propriétés
suivantes :

• # ind (h') £= # ind (h) — 1 ;

• le point d'indétermination propre de h' est situé sur /oo^+i).

Preuve. Considérons la décomposition de h en suites d'éclatements:

M

Fn- P2
h

La transformée (stricte) de s^iFf) dans M est d'auto-intersection inférieure

ou égale à —2 ; le lemme 9 (assertion 4) nous permet d'en déduire que
la première courbe contractée par 712 est la transformée de foo(Fn). La
transformée de foo(Fn) dans M est donc d'auto-intersection —1 ; d'autre

part dans Fn on a /oo(^n)2 0. On en déduit qu'après avoir éclaté p le
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reste de la suite d'éclatements tt\ concerne des points hors de Au lieu
de réaliser ces éclatements puis de contracter la transformée de foo(Fn) on

peut renverser l'ordre, à savoir contracter foo(Fn) puis réaliser le reste de la
suite d'éclatements. Autrement dit on a un diagramme commutatif (7tp est

l'éclatement en p et cont^ consiste à contracter la transformée de foo(Fn)) :

Les deux applications, éclatement de p puis contraction de foo(Fn)y sont
résumées dans le dessin suivant où l'on a représenté uniquement les diviseurs
à l'infini, en précisant les auto-intersections (celles-ci étant calculées à l'aide
des formules 5). On constate en particulier que la surface obtenue est bien de

type Fn+1.

-l0

fco (Fn)

S00 (Fn)

foo(Fn)

éclater p

0

foo(Fn+ù F'

contracter foo(Fn)

-(n + 1)

-(n + 1)

s00 {Fn-j-1

— -S00 (Fn)

En conclusion, éclater p diminue d'un le nombre de points d'indétermination,
et contracter la transformée de foo(Fn) n'en introduit pas de nouveau: on a

bien #ind {h') #ind(/z) — 1. D'autre part le point d'indétermination de h' est

situé sur la courbe qui a été produite en éclatant /?, à savoir /oo(Fn+i).

A l'issue de la première étape nous sommes dans les conditions

d'application du lemme 10, avec n — 1. Le lemme fournit une application

h' : F2 —> P2 dont le point d'indétermination propre est situé sur la fibre

fooiFf). Si ce point est précisément le point d'intersection avec la section à

l'infini, on peut de nouveau appliquer le lemme. En répétant ce processus
aussi longtemps que l'on reste dans les hypothèses du lemme 10 on obtient

un diagramme:
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(D2)
^2 / < \ \ 92

// \
91

^ p2

où (f2 est obtenu en appliquant n— 1 fois le lemme 10. De plus on a

#ind(^2) #ind(^i) — n + l.
Enfin le point d'indétermination de g2 est situé sur foo(Fn), et n'est pas

précisément le point d'intersection avec s^iFf) (sinon on pourrait appliquer
le lemme une fois de plus).

Troisième étape : récurrence descendante

Nous allons appliquer le lemme suivant, qui est analogue au lemme 10

(mais bien noter qu'ici nous supposons n > 2).

LEMME 11. Soit n > 2, et h une application birationnelle de Fn dans P2

qui provient d'un automorphisme polynomial de C2. Supposons que l'unique
point d'indétermination propre p de h soit situé sur mais ne soit pas
précisément le point d'intersection de /oo et Soq Considérons le diagramme
commutatif

où p consiste à éclater p puis à contracter la transformée stricte de foo(Fn).
Alors l'application h' satisfait les deux propriétés suivantes:

• #ind(/z7) #ind(/z) — 1 ;

• le point d'indétermination propre de h' est situé sur /00(E1n_1) et n'est
pas le point d'intersection de foo(Fn-{) et s^fF^x).

h
-P2

Preuve. Considérons la décomposition de h donnée par le théorème de
Zariski :

M
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La transformée de s^F#) dans M est d'auto-intersection —n, comme n >2
on en déduit (lemme 9) que la première courbe contractée par tt2 est la
transformée de foo(Fn). Comme dans la preuve du lemme 10 on obtient un
diagramme commutatif:

La surface obtenue en éclatant p puis en contractant la transformée de /«
est bien de type Fn_i ; ceci est résumé par le dessin suivant.

P 0

foo (Fn)

Soo(Fn)

éclater p

point d'indétermination (non propre) de h
correspondant au point d'indétermination propre de h'

-{n - 1)
-1

foo(Fn)

SooiJFn)

foo(Fn-i) Ff

contracter foo(Fn)

soo(Fn—{)
— Soo(Fn)

L'égalité #ind {h') #ind (h) — 1 est immédiate. Notons Ff le diviseur

produit en éclatant le point p ; h admet un point d'indétermination (non

propre) situé sur F'. De plus ce point ne peut pas être précisément le point
d'intersection de F' et de la transformée de foo(Fn), car sinon on aurait

^ïl(foo{Fn)) d'auto-intersection inférieure ou égale à -2 ce qui contredirait

qu'il s'agit de la première courbe contractée par 712. En conclusion ce

point correspond au point d'indétermination propre de h', et celui-ci est

donc situé sur foo(Fn-\) et n'est pas le point d'intersection de /oo(^n-i) et

Soo(Fn-i).

Après la deuxième étape on se trouve dans les hypothèses du lemme 11.

Remarquons de plus que si n > 3 l'application h' produite satisfait encore les
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hypothèses de ce même lemme. Après avoir appliqué n — 1 fois le lemme 11

nous obtenons un diagramme

(D3) F\
<P3 / * X

\ 93

/ \/ A

f ^ P2n 92

avec

#ind(g3) #ind(^2) — n + 1.

Enfin, le point d'indétermination propre de g3 est situé sur /oo(Fi), et n'est

pas le point d'intersection de /ooC^i) ^oo(^i)-

Quatrième étape : dernière contraction

En appliquant le théorème de Zariski à g3 nous obtenons un diagramme :

M

ti >- p21
93

Le lemme 9 (assertion 4) affirme que la première courbe contractée par tt2 est

la transformée stricte par 7ir ou bien de ou bien de Soo. Supposons que ce

soit la transformée de Alors après avoir réalisé la suite d'éclatements tti
et avoir contracté cette courbe, la transformée de soo est d'auto-intersection
0 et ne pourra donc plus être contractée; ceci vient contredire la troisième
assertion du lemme 9. La première courbe contractée est donc la transformée
de Soo, que l'on peut contracter par avance pour obtenir le diagramme suivant :

(D4) P2

Le morphisme est l'application d'éclatement de diviseur exceptionnel Sqq,

que l'on peut choisir (puisqu'elle est définie modulo isomorphisme) de manière
à ce que le point sur lequel on contracte soit [1 : 0 : 0]. On a de plus

#ind (g3) #ind (g4)
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Conclusion

On peut regrouper les quatre diagrammes (Dl),..., (D4) en un seul

|-i V2 j-, V3 j-pFi ~ - >- Fn - - >- Fi
vi y \

\

90

\ 9\
\
\
\

92 / 93

.Wir. -

P2

94

soit de manière condensée:

¥4 O (p3 O tp2 O (fi ///
P2

90

94

\ A
-^p2

avec

#ind(^4) #ind(<?o) — 2/2+1 (où n> 2).

Reste à vérifier que <p ip4 o <p<$ o cp2 o cpi est un automorphisme élémentaire.

Pour cela il suffit de constater que cp préserve le feuilletage y constante,
autrement dit que (^ préserve le pinceau des droites passant par [1 : 0 : 0]. Or
ceci est immédiat: l'éclatement cp\ envoie les droites passant par [1:0:0]
sur les fibres de F\, (p2 et (ps respectent les fibrations associées à F\ et

Fn, et enfin la contraction p>4 envoie les fibres de F\ sur les droites passant

par [1:0:0]. L'application g4 est donc un automorphisme de C2 qui
s'obtient en composant g avec un automorphisme affine puis un automorphisme

élémentaire, et satisfaisant l'inégalité:

#ind(#4) < #ind(g).

Par récurrence sur #ind(g), ceci termine la démonstration.

4. Compléments

4.1 Un exemple

Considérons l'automorphisme g suivant:

g: (x,y) h+ (y + ß(y + ax2)2 + 7(y + ax2)3,y + ax2) avec a, ß, 7 G C*
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La décomposition de g utilise deux automorphismes élémentaires :

g(x,y) - (x + ßy2 + yy3,y) ° (y*x) o (x + g/,y) o (y,x).

En appliquant le théorème de Zariski à g on décompose g à l'aide de huit

éclatements puis huit contractions. Quand on applique notre algorithme à

g on change l'ordre de ces éclatements et contractions comme le décrit le

diagramme suivant:

M

Fi F2 Fi FI F2 F3 F2 Fx

/ \ / \
p2 ^ p2 ^p2

\ (x + cry2, y) o (y, x) (^ + /5y2+7J;35};)o0;^) ^ ^

~
~9

Expliquons plus précisément comment est obtenu ce diagramme. Le point
d'indétermination propre de g est [0 : 1 : 0], on commence donc par considérer

go(y,x) qui est indéterminé en [1 : 0 : 0]. On éclate ce point, puis on applique

une fois le lemme 10. Sur la surface F2 obtenue le point d'indétermination est

situé sur la fibre (l'emplacement exact est paramétré par le coefficient a).
On applique alors une fois le lemme 11 puis on contracte la section ^oo(^i)-
On a ainsi obtenu la décomposition:

g g' o(x + ay2,y)o(y,x)

où g' n'admet plus que 5 points d'indétermination. On considère g' o(y,x)
pour se ramener à un automorphisme dont le point d'indétermination propre
est [1 : 0 : 0]. On éclate ce point, puis on applique deux fois le lemme 10. On
est alors en situation d'appliquer deux fois le lemme 11 (l'emplacement exact
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des points d'indétermination sur f00(^.3) et fooiFi) dépend des coefficients 7
et ß). Enfin on contracte la section on a ainsi obtenu

g'(x, y) (x +ßy2 + ° x)

4.2 Structure de produit amalgamé

Nous voulons montrer que Aut[C2] est non seulement engendré par les

sous-groupes A et mais que de plus c'est le produit amalgamé de ces deux

groupes. Autrement dit nous voulons montrer que toutes les relations dans le

groupe Aut[C2] sont induites par les relations dans les groupes A et E. Ceci

revient à montrer qu'une composition

h — a\ o e\ o • • • o an o en avec ö, G A \ et E E\ A

n'est jamais égale à l'identité. Bien noter qu'on peut se restreindre à considérer
des compositions h de cette forme, à savoir de longueur paire et commençant

par un automorphisme affine. En effet si h est de longueur impaire (et

supérieure à 3 : bien sûr si h est de longueur 1 ce n'est pas l'identité) on

peut faire baisser la longueur de h par conjugaison. De plus si h est de

longueur paire et commence par un automorphisme élémentaire, il suffit de

considérer h~1.

Chaque automorphisme et, vu comme application birationnelle de P2,

contracte la droite à l'infini sur le point [1:0:0] (car on suppose <7 ^ A).
De plus, dire que a; £ E revient à dire que le point [1 : 0 : 0] n'est pas un

point fixe de ai. On en déduit que l'extension de h à P2 contracte la droite
à l'infini sur le point a\([l : 0 : 0]), ce qui montre que h n'est pas l'identité.

4.3 Preuve sur un corps quelconque

Etant donné un corps k nous notons A^ et Z7 les groupes affine et

élémentaire à_ coefficients dans k ; par k nous désignons la clôture algébrique
de k. Une première remarque est que notre preuve fonctionne sans aucun

changement dans le cas d'un corps algébriquement clos k (la caractéristique
du corps n'a pas d'importance). Les résultats sur la géométrie des surfaces que
nous utilisons, à savoir les propriétés de la forme d'intersection (formules 5)

et le théorème de décomposition de Zariski sont énoncés avec un tel degré de

généralité par exemple dans le chapitre V de [18]. De même on peut recopier

l'argument ci-dessus pour montrer que, Aut[F] est le produit amalgamé de

Ai et E-k.

Considérons maintenant un corps k non algébriquement clos, et soit g

un élément de Aut[F] de degré d. On sait déjà que g est une composée
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d'automorphismes affines et élémentaires à coefficients dans k. Nous allons

maintenant en déduire qu'il existe une décomposition ne mettant en jeu que
des éléments de Ak et Ek.

Comme précédemment nous considérons g comme une application bira-

tionnelle de P? dans lui-même. Le point crucial est que nous savons que g
admet un unique point d'indétermination propre, qui est l'image par g~l de

la droite à l'infini. Choisissons un point p de la droite à l'infini dont les

coordonnées homogènes soient dans k et qui ne soit pas le point d'indétermination
de g~l (l'un des deux points [1:0:0] ou [0:1:0] convient). Alors g~l(p)
est le point d'indétermination propre de g, et est donc contenu dans Pk.
Par un raisonnement symétrique le point d'indétermination propre de g~l est

également dans Pk. En composant g à droite et à gauche par des éléments bien
choisis de Ak on peut donc se ramener au cas où les points d'indétermination
de g et g~l sont tous deux [1 : 0 : 0]. Ceci revient à dire qu'on s'est ramené

au cas où la décomposition de g dans le produit amalgamé de A~k et E-k

commence et finit par un automorphisme élémentaire :

g en o an-1 o • • • o a, o e\ avec at eAk\ Ek, ej G Ek\Ak.

Une récurrence immédiate montre alors que g s'écritg:(x,y)M- (7 yd'-d2h,ôydi 4

avec 7,S G k* et d\,d2 > 1 (on a écrit seulement les composantes
homogènes de plus haut degré). En composant g à gauche par l'automorphisme
(x,y) 1 y (pc -^yd2,y) qui est un élément de Ek on obtient un élément de
Aut[£2] de degré strictement inférieur à celui de g. Par récurrence sur le
degré ceci termine la démonstration.

Note. Alors que cet article était soumis pour publication J. F. de Bobadilla
m'a très aimablement écrit pour me signaler qu'il était l'auteur, de manière
à la fois concomitante et indépendante, d'une preuve du théorème de Jung
similaire à celle que j'ai exposée ici (voir le chapitre 1 de [5]).
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