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UNE PREUVE GEOMETRIQUE DU THEOREME DE JUNG

par Stéphane LAMY

1. INTRODUCTION

L’espace affine complexe C" posséde les qualités propres aux objets
mathématiques fascinants: de nature tres simple, il se trouve €tre a la base
d’une multitude de problemes intéressants et difficiles. En particulier le groupe
Aut[C"] des automorphismes polynomiaux de C" est loin d’étre bien compris.
[’étude de ces automorphismes est bien sir intimement liée aux recherches
autour de la fameuse Conjecture du Jacobien (voir [12]). De nombreuses
autres questions relatives au groupe Aut[C"] sont naturelles: on peut chercher
a déterminer les sous-groupes finis, les sous-groupes de Lie, les sous-groupes
linéarisables. .. On trouvera dans [21] un bel exposé de ces problématiques.
Par ailleurs il est apparu récemment que ces automorphismes fournissent
des exemples de systemes dynamiques ayant un comportement treés riche.
Concernant ces problemes un article fondateur est [13]; on pourra se reporter
a [35] pour un panorama des progres accomplis ces dix dernieres années. Les
questions que nous venons d’évoquer sont délicates en général, sans parler de
la possibilité d’étudier ce qu’il advient lorsqu’on remplace C par un corps
quelconque, voire par un anneau. Cependant il existe un cas particulier pour
lequel on possede de nombreux résultats: c’est celui de la dimension 2. On
dispose en effet d’'un théoréme de structure, énoncé par H. W.E. Jung dés
1942, qui donne un systeme de générateurs pour Aut[C?].

Nous noterons A le groupe des automorphismes affines de C?, i.e. le
groupe des éléments de Aut[C?] qui se prolongent en des automorphismes
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holomorphes de P?; et nous appellerons E (pour “élémentaire”, suivant les
notations de [13]) le sous-groupe de Aut[C?] constitué des automorphismes
qui préservent le pinceau des droites y = constante. Autrement dit:

A= {(x,y) = (a1x + b1y + c1, a2x + byy + ¢2);
a;,bi,c; € C, ayby — ayby # 0} ;
E={(x,y) — (ax+PQy),fy+7); «,f€C*, yeC, PecC[X]}.

THEOREME 1 (Jung, 1942). Le groupe Aut[C?] des automorphismes poly-
nomiaux de C* est engendré par les automorphismes affines et élémentaires.

Quelques années apres Jung, ce résultat était précisé par W. Van der Kulk
de la maniére suivante:

THEOREME 2 (Van der Kulk, 1953). Erant donné un corps k (de
caractéristique quelconque, algébriquement clos ou non), le groupe des
automorphismes polynomiaux de k*> est engendré par les automorphismes
affines et élémentaires a coefficients dans k. De plus Aut[k?] est le produit
amalgamé de ces deux sous-groupes.

Apres les articles de Jung [19] et Van der Kulk [22] de nombreuses autres
preuves, utilisant des techniques différentes, ont ét€ proposées. L’ objet de cet
article étant de donner encore une nouvelle preuve, nous commengons, afin
d’expliquer nos motivations, par un rapide survol des preuves disponibles dans
la littérature. D’une maniere générale, I'idée commune a toutes ces preuves est
de procéder par récurrence sur le degré; ainsi étant donné un automorphisme

g: (x,y) = (1%, ), g2(x,¥))

ou g1, g, sont des polyndmes de degrés respectifs d; et d,, il s’agit de montrer
que I'on peut abaisser le degré de g en composant successivement par un
automorphisme affine puis par un automorphisme élémentaire. Précisément,
en composant par un automorphisme affine on peut supposer que d; est
strictement supérieur a dp; il reste alors a montrer que la composante
homogene de plus haut degré de ¢; est un multiple de celle de g,, ce
qui se ramene assez facilement a montrer que d; est un multiple de d,.

La preuve la plus voisine de la notre (c’est-a-dire de nature géométrique) est
sans doute celle de M. Nagata [28], qui s’inspire de I’article de Van der Kulk.
Antérieurement W. Engel [11] avait proposé une preuve, laquelle fut reprise
par A. Gutwirth [17]. Nagata commente laconiquement ces deux preuves en
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disant qu’elles lui semblent difficiles a lire. Quoi qu’il en soit, Iidée ici est de
prolonger g en une application birationnelle de P? et de considérer la courbe
C préimage par g d’une droite générique. On obtient alors des informations
sur les degrés d; et dy en étudiant la singularité de C a I'infini.

Dans I’optique de donner une preuve valable sur tout corps, L. Makar-
Limanov [23] a proposé une alternative a la preuve de Van der Kulk en adoptant
une approche complétement algébrique. L’idée est d’introduire un nouveau
degré en accordant des poids différents aux variables x et y, en fonction
des degrés associés a I’application inverse de g. Notons que quelques années
plus tard ce méme auteur propose par une approche similaire une description
du groupe des automorphismes d’une large classe de surfaces affines [24].
Une preuve publiée par W. Dicks en 1983 [9] est une version quelque peu
simplifiée de I’argument de Makar-Limanov; on trouvera une rédaction précise
de cette preuve dans le livre de P.M. Cohn [8].

Une approche 1égerement différente a été proposée par R. Rentschler. Il
est assez aisé une fois le théoreme de Jung-Van der Kulk acquis de montrer
que toute représentation algébrique de (C,+) dans Aut[C?] est donnée a
conjugaison pres par un automorphisme €lémentaire. Rentschler emprunte le
chemin inverse: i1l démontre d’abord cette propri€été puis remarque que 1’on
peut en déduire le théoreme de Jung. En effet, a 1’automorphisme g on
peut associer la dérivation localement nilpotente 0/0g; . Cette preuve, publiée
comme note au CRAS en 1968 [31], a été reprise en détail récemment par
L. M. Druzkowski et J. Gurycz [10].

Une preuve dite élémentaire est publiée en 1988 par J.H. McKay et
S.S. Wang [26]; elle repose sur une formule d’inversion. Les auteurs montrent
que I’application ¢~! peut s’exprimer a I’aide d’un calcul de résultants mettant
en jeu les polyndmes a une variable ¢;(0,1), ¢1(z,0), ¢2(0,1), ¢-(z,0). La
relation souhaitée entre d; et d» en découle.

A T’oppos€, on pourra trouver une preuve “sophistiquée” dans le livre de
K. Matsuki [25]. L’idée ici est d’utiliser le cadre fourni par la théorie de
Mori pour formuler une preuve du théoréme de Jung, avec I’espoir que cette
démarche permette ensuite d’attaquer I’étude jusqu’alors quasi-inaccessible de
la structure du groupe Aut[C"] pour n > 3.

Citons enfin une derniere approche : dans [1], S.S. Abhyankar et T. T. Moh
démontrent que deux plongements biréguliers de C dans C? different par un
automorphisme de C?, et remarquent que leur preuve implique le théoréeme de
Jung. Divers auteurs ont proposé de nouvelles preuves de ce résultat; on peut
citer les articles récents de R.V. Gurjar [16], E. Casas-Alvero [6] et E. Artal-
Bartolo [3], tous trois proposant des démonstrations de nature géométrique.
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Nous allons voir cependant que si I’objectif est seulement d’obtenir une preuve
du résultat de Jung il est possible de donner une preuve géométrique beaucoup
plus concise.

A Torigine de notre travail se trouve un postulat fort naturel: le théoreme
de Jung est un résultat de géométrie birationnelle. Tout automorphisme de
C? peut en effet se prolonger en une application birationnelle de P?. Dans
ce contexte il nous semble qu’effectuer une récurrence sur le degré n’est pas
la démarche la plus naturelle; le nombre de points d’indétermination s’avere
étre une quantité plus facile a manipuler. Ceci n’était pas vraiment le point de
vue de Jung, malgré son titre: “Sur les transformations birationnelles entieres
du plan”. Cependant, dans une note qui semble étre passée inapercue, O.-H.
Keller [20] réagit au travail de Jung en remarquant, sans donner de détails,
qu’il est certainement possible de donner une preuve simplifiée en utilisant les
résultats connus sur les applications birationnelles de P?. Plus tard, dans un
court article I. R. Shafarevich [32] énonce le théoreme de Jung en indiquant
que la démonstration repose sur la possibilité de décomposer toute application
birationnelle entre surfaces compactes comme une suite d’éclatements (c’est
le théoreme 6 énoncé au paragraphe suivant); malheureusement il ne semble
jamais avoir eu l’occasion de publier une telle preuve (dans le complément
a son article [34] Shafarevich se contente de renvoyer a un travail de
M. H. Gizatullin et V.I. Danilov [14] qui de par son ambition de généralité
maximale s’avere de lecture difficile). Enfin, récemment S. Orevkov [30]
signale que 1’on peut retrouver le théoréeme de Jung a partir d’un travail de
A.G. Vitushkin, mais a nouveau les détails ne sont pas explicités.

Le théoreme de Jung est en effet a mettre en parallele avec un résultat
classique généralement attribué a M. Noether [29]:

THEOREME 3 (Noether, 1872). Toute application birationnelle du plan pro-
jectif P> se décompose a ’aide d’automorphismes linéaires et de I’involution
quadratique standard

o:[x:y:zl--» [yz:xz:xy].

Il semble que la premiere preuve complete de cet énoncé soit en fait due a
G. Castelnuovo [7], qui déduit le théoreme de Noether du résultat intermédiaire
suivant:

THEOREME 4 (Castelnuovo, 1901). Toute application birationnelle du plan
projectif P* s’écrit comme une composition d’automorphismes linéaires et
d’applications dites de Jonquieres.
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A propos des applications de type de Jonquiéres disons simplement que ce
sont les applications de degré n admettant un point base de multiplicité n—1;
le fait remarquable est que les automorphismes polynomiaux qui s’étendent en
des applications de type de Jonquieres sont précisément (a conjugaison affine
prés) les automorphismes élémentaires. Ainsi le théoréme de Jung peut étre
vu comme un cas spécial du résultat de Castelnuovo. On pourra trouver dans
[27] une preuve du théoréme 3 tres proche en esprit de la preuve du théoreme
de Jung que nous proposons dans cet article. Il peut sembler paradoxal que le
théoreme de Castelnuovo remonte a 1901, alors que celui de Jung qui s’avere
étre un cas particulier plus facile (en particulier nous n’aurons pas besoin
de la notion de multiplicité d’un point d’indétermination qu’utilise Nagata),
remonte lui a 1942. Une réponse possible est que Castelnuovo tout comme
ses contemporains ne se soit jamais préoccupé de ce probleme.

On peut résumer notre démarche en disant que nous nous sommes proposes
de donner une preuve du théoreme de Jung telle qu’aurait pu la concevoir un
géometre du début du 20° siecle; ou encore, la preuve qui nous parait se cacher
derriere les remarques de Keller et Shafarevich citées plus haut. Notre preuve
a le mérite d’étre concise, de ne faire intervenir aucun calcul, et de mettre en
lumiere pourquoi ce résultat est propre a la dimension 2. La méthode étant
de nature géométrique, il nous a semblé plus transparent de nous cantonner
au cas classique (a savoir que nous travaillons sur le corps C); cependant
cette restriction n’est en rien essentielle ainsi que nous le remarquons en fin
d’article.

[’article est organisé comme suit.

Le second paragraphe regroupe les résultats de géométrie birationnelle que
nous utilisons; ceux-ci sont tout a fait élémentaires et contenus dans votre
livre favori d’introduction a la géométrie algébrique (qui est probablement
[15], [18] ou [33]).

La preuve proprement dite du théoréme de Jung est détaillée dans le
troisieme paragraphe.

Enfin, dans un dernier paragraphe nous illustrons notre méthode par un
exemple puis nous démontrons le théoréme de Van der Kulk. Nous indiquons
d’abord comment retrouver géométriquement que Aut[C?] est le produit
amalgamé des sous-groupes affine et élémentaire. Bien noter que ceci est
essentiellement une remarque triviale (qui certes se révele cruciale pour les
applications), et que le résultat réellement délicat est celui contenu dans
I"énoncé de Jung. Pour finir, nous montrons comment notre preuve s’adapte
facilement au cas d’un corps quelconque.
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2. APPLICATIONS BIRATIONNELLES ENTRE SURFACES

Notre démarche pour démontrer le théoréme de Jung est de considérer un
automorphisme polynomial de C? comme une application birationnelle de P?
dans lui-méme, et d’utiliser un théoréme de structure classique pour ce type
d’applications. Parmi beaucoup de choix possibles nous avons pris comme
référence pour ce paragraphe les deux premiers chapitres de [4].

Par surface nous entendrons toujours une surface complexe algébrique
lisse, et par ouvert un ouvert de Zariski. Soient X et ¥ deux surfaces; une
application rationnelle ¢: X --+ Y est la donnée d’un morphisme d’un ouvert
U de X dans Y, qui ne puisse pas s’étendre a un ouvert plus grand. Quand
U =X on a un vrai morphisme: on réserve a ce cas la notation ¢: X — Y.
On montre facilement (voir [4, IL.4]) que X \ U est un ensemble fini de
points. Ainsi une application rationnelle n’est pas une application au sens
strict, puisque qu’il existe un nombre fini de points hors du domaine de
définition. Cependant I’image d’une courbe est elle toujours définie: s1 C est
une courbe dans X, on définit la transformée stricte ¢(C) de C par ¢ comme
I’adhérence de 1’image par ¢ de CNU. Bien noter que I’'image d’une courbe
(disons 1irréductible) peut €tre un point.

Une application birationnelle entre X et ¥ est la donnée d’une application

rationnelle ¢: X --» ¥ qui induit un isomorphisme entre un ouvert de X et
un ouvert de Y.

EXEMPLE. Considérons I’application suivante de P? dans lui-méme (que
nous avons déja rencontrée lors de 1’énoncé du théoreme de Noether):

a:[x:y:z]f—+ [yz : xz : xy].

L’application o, dite application quadratique standard, est bien définie. en
dehors des trois points [1:0:0], [0:1:0] et [0:0:1]. De plus o induit
un automorphisme de P? privé des trois droites x = 0, y = 0 et z = 0.
Nous laissons le lecteur vérifier par exemple que I’image par o de la droite
7z =20 est le point [0:0: 1], que 'image d’une droite passant par [0:0: 1]
est encore une droite passant par [0 : O : 1], et que I'image d’une droite
générique est une conique passant par les trois points [1:0:0], [0:1:0]
et [0:0:1].

Un exemple fondamental d’application birationnelle est I’application
d’éclatement en un point, que nous rappelons brievement. Soit S une surface,
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et p un point de S. Il existe une surface S et un morphisme 7: S — S tels
que

e E=7"Y(p) soit isomorphe a P!;

e 7 induise un isomorphisme de S \E sur S\p.

A isomorphisme pres S et 7 sont uniques. On dit que 7 est 1’application
d’éclatement au point p, ou encore que S est ’éclaté de S en p; la courbe
rationnelle E est appelée le diviseur exceptionnel de I’éclatement. Si C C S
est une courbe passant par p, on note C la transformée stricte de C, c’est-
a-dire 1’adhérence de w~!(C \ {p}). Par transformée totale de C on désigne
le diviseur 7*C; par exemple si C est lisse en p on a 7°C = C+E.

Rappelons que la surface S est munie d’une forme d’intersection : si Dy,
D, sont deux diviseurs (i.e. des sommes finies »_ \;C; ou les C; sont des
courbes irréductibles éventuellement singulieres, et les \; sont des entiers
relatifs), alors on peut définir un nombre d’intersection D;.D,. Lorsque D;
et D, sont simplement deux courbes distinctes, D; . D, correspond au nombre
de points d’intersection de ces deux courbes comptés avec multiplicité; D1 . D,
est dans ce cas positif ou nul. On peut étendre cette définition naturelle pour
donner un sens a 1’intersection de deux diviseurs quelconques, en particulier on
peut parler de 1’auto-intersection d’un diviseur (voir [4, th. 1.4]). Nous noterons
D? au lieu de D .D D’auto-intersection d’un diviseur D. Bien noter que 1’auto-
intersection d’une courbe peut €tre négative. Le nombre d’intersection possede
les propriétés agréables suivantes (D;, Dy et Dz sont trois diviseurs):

e Si D, et D5 sont linéairement équivalents alors D .D, = D .Ds;
e Avec les notations ci-dessus:

(7*Dy . 7*Dy) = (Dy . Dy);
(E.7*Dy)=0.

Concernant I’action de I’éclatement sur les nombres d’intersection, nous
utiliserons de maniere répétée les égalités suivantes qui découlent facilement
des propriétés que nous venons d’énoncer (C est toujours une courbe lisse
passant par p):

FORMULES 5. FE?=—1:

~2
C =C*-1.

Précisons un point de vocabulaire. Suivant comment nous considérerons
I’application S + § nous emploierons deux terminologies différentes: nous

o~

dirons que I’on passe de § a § en éclatant le point p, et que I'on passe
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de S a S en contractant la courbe E. Dans la suite nous considérerons des
suites d’éclatements. En notant m, 1’application d’éclatement au point p;,
nous aurons des applications de la forme ¢: M +— X, o M et X sont deux
surfaces et ¢ = m, o---om, (ici p; € X et pour tout i > 2, p; appartient a la
surface obtenue apres éclatement des points pi,...,p;—1). Dans cette situation
nous dirons que p; est le premier point éclaté par ¢, ou inversement que le
diviseur exceptionnel E, produit par 7, est la premiere courbe contractée
par .

Les éclatements suffisent a décrire toutes les applications birationnelles
entre surfaces: c’est ce qu’exprime le résultat suivant (voir [4, I1.12]).

THEOREME 6 (Zariski, 1944). Toute application birationnelle entre deux
surfaces s’obtient comme une suite d’éclatements puis de contractions,
autrement dit si X, Y sont des surfaces et

g: X -——Y

est une application birationnelle (qui n’est pas un isomorphisme), alors il existe
une surface M et des suites d’éclatements m et m, tel que le diagramme
suivant commute :

M
N\
O el §

Suivant Beauville nous attribuons ce théoreme a Zariski. La preuve, qui
n’est pas tres difficile, se décompose en deux étapes. La premiere étape
consiste a composer g avec une suite d’éclatements 7; afin d’éliminer les
points d’indétermination. On obtient ainsi un diagramme commutatif:

ou g est un morphisme. A noter que ce procédé peut s’appliquer a toute
application rationnelle entre surfaces (voir [4, IL7]); et peut également
s’adapter en dimension supérieure.

A contrario la deuxieme étape, qui consiste a montrer que le morphisme
g est une suite de contractions (voir [4, II.11]) est tout a fait particuliere au
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cas d’un morphisme birationnel entre deux surfaces. On se rameéne a montrer
la proposition suivante :

PROPOSITION 7. Soit §: M +— Y un morphisme birationnel entre surfaces.
Si y €Y est un point oit §~' n’est pas définie, alors g se factorise en

Y
2
M - Y
g

o o est [’éclatement en y, et h est un morphisme.

Nous allons proposer une preuve de cette proposition a I’aide d’un argument
élémentaire de géométrie différentielle qui peut éclairer la démonstration
donnée dans [4, I1.8]. A noter qu’a aucun moment il n’est fait usage du criteére
de Castelnuovo (contraction des courbes rationnelles d’auto-intersection —1).
Nous admettons le

LEMME 8 (voir [4, II.10]). Si ¢: X ——» Y est une application birationnelle
entre deux surfaces, et si x € X est un point ou @ est non définie, alors il
existe une courbe C C Y telle que ¢~ (C) = x.

Preuve de la proposition 7. Supposons que & = o~ ! o § ne soit pas un
morphisme, et soit x € M un point ou A n’est pas défini. Dans cette situation
d’une part g(x) =y et g n’est pas localement inversible en x; d’autre part
il existe une courbe dans Y qui est contractée sur x par A~'. Cette courbe
ne peut étre que le diviseur exceptionnel E associ€é a o. Considérons p et g
deux points distincts de E ou h~! est bien définie, et C, C' deux germes de
courbes lisses transverses a E en p et g respectivement. Alors o(C) et o(C’)
sont deux germes de courbes lisses transverses en y, qui sont image par §
de deux germes de courbes en x. La différentielle de g en x est donc de

rang 2, ce qui vient contredire le fait que § n’est pas localement inversible
en x (voir figure 1). [

Avant de commencer la preuve du théoreme de Jung nous précisons
quelques points de vocabulaire et expliquons dans quel contexte nous ferons
usage du théoreme de Zariski. Nous appelerons points d’indétermination de
g les points que 1’on éclate lors de la construction de m;; ce sont donc
des points qui appartiennent ou bien a X ou bien a des éclatés de X. Les
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Y |C’ C
g p “E
7 .
h 7
= o(C)
M Y
h—l(cl) ?— y
(o)) o(C)

FIGURE 1

Supposer 4 non définie en x conduit a une contradiction

points d’indétermination contenus dans X seront dits points d’indétermination
propres (classiquement on dit que les autres points sont dans des voisinages
infiniment proches des points d’indétermination propres). Le nombre de points
d’indétermination de g (propres ou non) sera noté #ind (g).

REMARQUE. A noter que cette définition est cohérente car les suites
d’éclatements 7, et m, produites par le théoreme sont uniquement déterminées
par g (a isomorphisme pres). La suite 7, s’obtient précisément en éclatant
successivement les points ou g n’est pas définie. De maniere symétrique la
suite 7, est déterminée par les points ol ¢g~! n’est pas définie. Bien siir on
pourrait rallonger artificiellement les suites m; et 7 en éclatant des points
ou g et g—! sont bien définies. Il est cependant implicite dans notre énoncé
du théoréme de Zariski que nous considérons les suites 7; et m minimales,
au sens ou elles vérifient la propriété universelle suivante (voir [2]):

Soient ¢y: M +— X et w,: M’ +— Y deux morphismes birationnels tels
que @y = go ;. Alors il existe un unique morphisme h: M’ +— M qui fasse
commuter le diagramme :
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Dans toute la suite nous utiliserons le théoréme de Zariski seulement dans
un cas bien particulier: nous considérerons g: X --» P? provenant d’un auto-
morphisme polynomial de C?. Nous entendons par la que I’on s’est donné
une partition X = C>UD ou D est une réunion de courbes irréductibles
(appelée diviseur A I'infini), une partition P> = C* UL ou L est une droite
(droite & Iinfini), et que ¢ induit un isomorphisme de X \ D dans P2\ L.
Cette situation entraine des contraintes fortes sur les points d’indétermination
de g; c’est ce qu’exprime le lemme suivant:

LEMME 9. Soient X une surface et g une application birationnelle de X
dans P? provenant d’un automorphisme polynomial de C2. Nous supposons
de plus que g n’est pas un morphisme. Alors
1. ¢ admet un seul point d’indétermination propre, situé sur le diviseur a

Uinfini de X ;

2. g admet des points d’indétermination py,...,ps (s > 1) tels que
(a) py soit le point d’indétermination propre;
(b) pour tout i =2,...,s, le point p; soit situé sur le diviseur produit en
éclatant p;_1 ;
3. chacune des courbes irréductibles contenues dans le diviseur a [’infini de
X est contractée sur un point par g ;

4. la premiére courbe contractée par T, est la transformée stricte d’une
courbe contenue dans le diviseur a 'infini de X ;

5. en particulier, si X = P?, la premiére courbe contractée par T, est la
transformée de la droite a Uinfini “a la source”.

Preuve. Nous savons (lemme 8) que si p est un point d’indétermination
propre de g alors il existe une courbe qui est contractée sur p par g !.
Dans notre situation la seule courbe de P? candidate a étre contractée est
la droite a I'infini; i1l y a donc au plus un point d’indétermination propre
pour g dans X. Comme nous supposons que g n’est pas un morphisme, g
admet exactement un point d’indétermination propre. La deuxieme affirmation
découle alors par une récurrence immédiate. De méme chaque courbe dans le
diviseur a I’infini dans X est ou bien contractée sur un point, ou bien envoyée
sur la droite A Iinfini dans P?. Comme ¢! contracte la droite & I’infini sur
un point, cette deuxieme possibilité est exclue : nous avons montré la troisiéme
assertion. De ce qui précede il découle que le diviseur a I'infini dans M est
constitué du diviseur d’auto-intersection —1 produit en éclatant p,, des autres
diviseurs produits au cours de la suite d’éclatements, tous d’auto-intersection
inférieure ou égale a —2, et enfin de la transformée stricte du diviseur 2
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I'infini dans X (ici nous avons utilisé les formules 5). Comme la premiere
courbe contractée par m, doit étre d’auto-intersection —1, et ne peut étre la
derniere courbe produite par m; (car cela contredirait le fait que p, est un
point d’indétermination), on obtient bien que la premiere courbe contractée par
7y est la transformée stricte d’une courbe contenue dans le diviseur & I’infini

de X. La derniere assertion n’est qu’une reformulation de la quatrieme, dans
le cas o X =P2. [

3. PREUVE DU THEOREME DE JUNG

Nous considérons g un automorphisme polynomial de C?, que nous
prolongeons en une application birationnelle (toujours notée g) de P? dans
lui-méme. Si g s’écrit

g: (x,y) = (g1(x,¥), g2(x,¥))

et que n est le degré de g (c’est-a-dire le plus grand des degrés de g; et g»),
alors en coordonnées homogénes 1’extension de g a P? s’écrit

g:[x:y:z] - [f'a1(x/2,y/2) : Z'92(x/2,y/2) : 7'].

La droite 4 I’infini dans P? est ici la droite d’équation z = 0. Nous voulons
montrer que ¢ s’écrit comme une composée d’automorphismes affines et
élémentaires. La preuve va s’effectuer par récurrence sur le nombre #ind (g)
de points d’indétermination de g.

D’aprés le lemme 9 (assertion 1) le prolongement g: P? --» P? admet
un unique point d’indétermination propre situ€ sur la droite a l'infini. En
composant g par un automorphisme affine nous pouvons nous ramener au
cas ou ce point est [1 : O : 0]. Autrement dit nous avons un diagramme
commutatif :

ou a est affine et go admet [1:0: 0] comme point d’indétermination. Bien
sir on a

#ind (go) = #1nd (g) .
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Nous allons maintenant montrer qu’il existe un diagramme

P2
AN
90/1 \QOO‘Pl
/ AN
/s N\
Pz___é?)_—>l)2

ot ¢ est le prolongement d’un automorphisme élémentaire de C?, et tel que
#ind (go 0 ¢~ 1) < #ind (go) -

Notre démarche va consister a considérer le diagramme donné par le théoreme
de Zariski!):

M
7 X
PZ___g_O___>P2

et & réordonner les éclatements mis en jeu dans m; et 7. Ainsi, au cours
de quatre étapes que nous allons maintenant détailler, ¢ va €tre construit en
réalisant certains éclatements de la suite 7, et certaines contractions de la
suite 7.

PREMIERE ETAPE: ECLATEMENT DE [1:0: 0]

Le point [1 : O : O] est le premier point éclaté par m;; considérons
donc la surface F; obtenue en éclatant P? au point [1 : O : 0]. Cette
surface est un compactifié de C? et est naturellement munie d’une fibration
rationnelle correspondant aux droites y = constante. Le diviseur a 1’infini est
constitué de deux courbes rationnelles (i.e. isomorphes 2 P!) s’intersectant
transversalement en un point. On distingue d’une part la transformée stricte
de la droite a I’infini dans P?; c’est une fibre que nous noterons f,,. D’autre
part on a le diviseur exceptionnel de I’éclatement, qui est une section pour
la fibration: nous la noterons s.,. On a bien siir (appliquer les formules 5)
f2 =0 et s, = —1. Plus généralement pour tout n > 1 nous noterons F,
un compactifié de C*> muni d’une fibration rationnelle, tel que le diviseur
I'infini soit constitué de deux courbes rationnelles transverses: une fibre f.,
et une section s, d’auto-intersection —n. Ces surfaces sont classiquement

) Chaque fois que nous utiliserons le théoréme de Zariski nous noterons M, T et m la
surface et les suites d’éclatements produites, le contexte permettant d’éviter toute confusion.
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appelées :surfaces -de Hirzebruch; nous ne présupposons aucune connaissance
particuliere les concernant. Un point de notation: nous écrirons s..(F,) et
foo(Fr) quand plus d’une surface de Hirzebruch seront mises en jeu.

Revenons a l’application go. Considérons le diagramme commutatif:

(D1) Fy

ou 901_1 est I’application d’éclatement au point [1:0:0]. On a

#ind (g1) = #ind (go) — 1.

Reprenons maintenant le diagramme donné par le théoreme de Zariski
appliqué a go. D’apres le lemme 9 (assertion 5) la premicre courbe contractée
par 7, qui doit étre une courbe dans M d’auto-intersection —1, est la
transformée de la droite a I’infini. Celle-ci correspond a la fibre f., dans Fj.
Or dans F; on a f2 = 0. L’auto-intersection de cette courbe doit encore
diminuer d’un, donc le point d’indétermination propre p de g; est situé sur
foo - Par ailleurs on sait (lemme 9, assertion 2) que ce mé€me point p appartient
a la courbe produite par I’éclatement gol_l, a savoir S, . Finalement p est
précisément le point d’intersection de fo, et Soo-

DEUXIEME ETAPE : RECURRENCE ASCENDANTE

Dans le raisonnement qui va suivre nous utiliserons des applications entre
surfaces réglées généralement appelées “transformations €lémentaires” (cepen-
dant nous n’emploierons pas cette terminologie, ce qui €vitera d’ailleurs toute
confusion avec les éléments du groupe E). Ces transformations sont la com-
posée d’un éclatement et d’une contraction. Plus précisément soit S une
surface réglée, c’est-a-dire une surface munie d’une fibration f: S — C ou
C est une courbe, et telle que toutes les fibres de f soient isomorphes
a P!. Considérons p € S et notons F_la fibre contenant p. La transfor-.
mation élémentaire au point p est I’application birationnelle qui consiste a
éclater le point p (produisant ainsi un diviseur exceptionnel F’) puis a con-
tracter la transformée stricte de F. On obtient ainsi une nouvelle surface
réglée S’ .
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F FI /
S ) S/
p éclater p contracter F
————— > —
F
\ /
/'\C

Dans les preuves des lemmes 10 et 11 nous allons utiliser de telles
transformations, pour des surfaces réglées de base C isomorphe a Pl

LEMME 10. Soit n > 1, et h une application birationnelle de F, dans P2
qui provient d’un automorphisme polynomial de C?. Supposons que [’unique
point d’indétermination propre de h soit le point p intersection de foo(Fy) et
Soo(Fy). Considérons le diagramme commutatif

Fn+1

ol @ consiste a éclater p puis a contracter la transformée stricte de foo.
Alors Uapplication birationnelle W' = ho ¢~ satisfait les deux propriétés
suivantes :

e #ind(W)=4#ind(h)—1;

e le point d’indétermination propre de h' est situé sur foo(Fyi1).

Preuve. Considérons la décomposition de s en suites d’éclatements :

M
N
Fn———z——>P2

La transformée (stricte) de s.o(F,) dans M est d’auto-intersection inférieure
ou égale a —2; le lemme 9 (assertion 4) nous permet d’en déduire que
la premiere courbe contractée par m, est la transformée de f,,(F,). La
transformée de f.(F,) dans M est donc d’auto-intersection —1; d’autre
part dans F, on a foo(F)?> = 0. On en déduit qu’apres avoir éclaté p le
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reste de la suite d’éclatements 1 concerne des points hors de f,. Au lieu
de réaliser ces éclatements puis de contracter la transformée de foo(F,) on
peut renverser I’ordre, a savoir contracter f..(F,) puis réaliser le reste de la
suite d’éclatements. Autrement dit on a un diagramme commutatif (7, est
I’éclatement en p et conty_ consiste a contracter la transformée de foo(Fy)):

M -

MI

" N
Fn - Fn+l —————— > P2

~ ~
~ ~
~ —~

= |

Les deux applications, éclatement de p puis contraction de f.,(F,), sont
résumées dans le dessin suivant ou I’on a représenté uniquement les diviseurs
a I'infini, en précisant les auto-intersections (celles-ci étant calculées a 1’aide
des formules 5). On constate en particulier que la surface obtenue est bien de

type Fri1.

= 1= Foo () :
foo(Fn) o foo(Fup1) = F'
_é(ilﬁtt_er_ {; contracter foo(Fp,) i+ 1)
—n
Soo (Fn) —(n+1) Soo(Fn—}-l)
= Soo(Fn)

En conclusion, éclater p diminue d’un le nombre de points d’indétermination,
et contracter la transformée de f.,(F,) n’en introduit pas de nouveau: on a
bien #ind (h") = #ind (k) — 1. D’autre part le point d’indétermination de A’ est
situé sur la courbe qui a été produite en éclatant p, a savoir foo(Fy+1). [l

A Tlissue de la premicre étape nous sommes dans les conditions
d’application du lemme 10, avec n = 1. Le lemme fournit une applica-
tion A': F, --+» P? dont le point d’indétermination propre est situé sur la fibre
foo(F2). Si ce point est précisément le point d’intersection avec la section a
I’infini, on peut de nouveau appliquer le lemme. En répétant ce processus
aussi longtemps que 1’on reste dans les hypotheéses du lemme 10 on obtient
un diagramme :
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(D2) F,
w2 ¥ h < 92
7/ N
/ A\
______ 2
£y gi ~P

oll ¢, est obtenu en appliquant n — 1 fois le lemme 10. De plus on a
#ind (gp) = #ind(g;) —n+ 1.

Enfin le point d’indétermination de g, est situé sur f,.(F,), et n’est pas
précisément le point d’intersection avec so.(F,) (sinon on pourrait appliquer
le lemme une fois de plus).

TROISIEME ETAPE : RECURRENCE DESCENDANTE

Nous allons appliquer le lemme suivant, qui est analogue au lemme 10
(mais bien noter qu’ici nous supposons n > 2).

LEMME 11. Soit n > 2, et h une application birationnelle de F, dans P?
qui provient d’un automorphisme polynomial de C*. Supposons que !'unigue
point d’indétermination propre p de h soit situé sur f., mais ne soit pas
précisément le point d’intersection de f., et So. Considérons le diagramme
commutatif

ou @ consiste a éclater p puis a contracter la transformée stricte de foo(F),).
Alors 'application K satisfait les deux propriétés suivantes :

e #ind (%) =#ind(h) —1;

e le point d’indétermination propre de h' est situé sur foo(F,_1) et n’est
pas le point d’intersection de foo(Fy_1) et Soo(Fp_1).

Preuve. Considérons la décomposition de 4 donnée par le théoréme de
Zariski :
M
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La transformée de so.(F,) dans M est d’auto-intersection —n, comme n > 2
on en déduit (lemme 9) que la premiere courbe contractée par m, est la
transformée de f.(F,). Comme dans la preuve du lemme 10 on obtient un
diagramme commutatif:

M\contfoo

M/

Wp/ \COl’ltfoo
Fn\ Fn—l —————— >P2

~ ~
~ -~
~ -

La surface obtenue en éclatant p puis en contractant la transformée de f,,
est bien de type F,_;; ceci est résumé par le dessin suivant.

point d’indétermination (non propre) de A
correspondant au point d’indétermination propre de A’

" %—J \
p 0 1 0

foo(F) fooFn1) = F'
fé(il?t_er_ e) rfo:(;“n) contracter foo (Fp) - 1)
—n
Soo(Fn) —n Soo(Fn—1)
oo (Fi) = Soolfn)

L’égalité #ind(h') = #ind(h) — 1 est immédiate. Notons F’ le diviseur
produit en éclatant le point p; h admet un point d’indétermination (non
propre) situé sur F'. De plus ce point ne peut pas étre précisément le point
d’intersection de F’ et de la transformée de f,,(F,), car sinon on aurait
T '(f-o (F,)) d’auto-intersection inférieure ou égale & —2 ce qui contredirait
qu’il s’agit de la premiere courbe contractée par m,. En conclusion ce
point correspond au point d’indétermination propre de A, et celui-ci est
donc situé sur f(F,—1) et n’est pas le point d’intersection de f.o(F,_1) et
SOO(F n—l)- D

Apres la deuxieme étape on se trouve dans les hypotheéses du lemme 11.
Remarquons de plus que si n > 3 1’application 4’ produite satisfait encore les
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hypoth&ses de ce méme lemme. Aprés avoir appliqué n — 1 fois le lemme 11
nous obtenons un diagramme ’

(D3) Fy
©3 v 7 h ~ 93
/ AN
/ A\
______ > P2
Fa 92 p
avec

#ind (g3) = #ind(gp) —n+ 1.

Enfin, le point d’indétermination propre de g3 est situé sur foo(F1), et n’est
pas le point d’intersection de foo(F1) et Soo(F1).

QUATRIEME ETAPE: DERNIERE CONTRACTION

En appliquant le théoréme de Zariski 2 g3 nous obtenons un diagramme :

M
|
|
Fl___g_?,—_>l)2 E

Le lemme 9 (assertion 4) affirme que la premiere courbe contractée par m, est
la transformée stricte par 7; ou bien de f,, ou bien de s.,. Supposons que ce
soit la transformée de f.,. Alors apres avoir réalisé la suite d’éclatements 7
et avoir contracté cette courbe, la transformée de s., est d’auto-intersection
0 et ne pourra donc plus €tre contractée; ceci vient contredire la troisiéme
assertion du lemme 9. La premiere courbe contractée est donc la transformée
de s, que I’on peut contracter par avance pour obtenir le diagramme suivant : ‘

(D4) p2

Le morphisme 4 est I’application d’éclatement de diviseur exceptionnel s,
que 1’on peut choisir (puisqu’elle est définie modulo isomorphisme) de maniére - - -
a ce que le point sur lequel on contracte soit [1:0:0]. On a de plus

#1nd (g3) = #1ind (g4) .

e g A et
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CONCLUSION

On peut regrouper les quatre diagrammesh (D1),...,(D4) en un seul

¥2 ¥3

\
a1 /4 \ : // Y
v/
/ \ | /

avece
#ind (gs) = #ind (go) — 2n + 1 (ol n > 2).

Reste a vérifier que ¢ = @40 @30, 0wy est un automorphisme élémentaire.
Pour cela il suffit de constater que ¢ préserve le feuilletage y = constante,
autrement dit que ¢ préserve le pinceau des droites passant par [1 : 0 : 0]. Or
ceci est immédiat: 1’éclatement (; envoie les droites passant par [1 : 0 : 0]
sur les fibres de Fy, ¢, et @3 respectent les fibrations associées a F; et
F,, et enfin la contraction ¢4 envoie les fibres de F; sur les droites passant
par [1 : O : 0]. L’application g4 est donc un automorphisme de C? qui
s’obtient en composant g avec un automorphisme affine puis un automor-
phisme élémentaire, et satisfaisant 1’inégalité:

#ind (g4) < #ind (g) .

Par récurrence sur #ind (g), ceci termine la démonstration.

4. COMPLEMENTS

4.1 UN EXEMPLE

Considérons 1’automorphisme g suivant:

g: (x,7) = O+ B + ) + vy + ax?)’,y + ax?) avec «, B,y € C*.
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La décomposition de g utilise deux automorphismes élémentaires :

g(x,y) = (x + By + 77, y) 0 (3, %) 0 (x + ay?, y) 0 (3, %) .

En appliquant le théoréme de Zariski 2 g on décompose g a 1’aide de huit
éclatements puis huit contractions. Quand on applique notre algorithme a
g on change 'ordre de ces éclatements et contractions comme le décrit le
diagramme suivant:

M

PN
e N\
v N
7r1/ \Wz
/ N
e N
/NN /NN NN
Fy F F Fy F F3 F Fy

/ N/ N\

PP-——-—-—"—-—-—-—-——-- >p2- - -—— - - —=———— = - — = > P2

Expliquons plus précisément comment est obtenu ce diagramme. Le point
d’indétermination propre de g est [0 : 1 : 0], on commence donc par considérer
go(y,x) qui est indéterminé en [1 : 0 : 0]. On éclate ce point, puis on applique
une fois le lemme 10. Sur la surface F, obtenue le point d’indétermination est
situé sur la fibre f., (I’emplacement exact est paramétré par le coefficient o).
On applique alors une fois le lemme 11 puis on contracte la section so.(F1).
On a ainsi obtenu la décomposition :

g=g o+ ay’,y)o(,x)

ou g’ n’admet plus que 5 points d’indétermination. On considére ¢’ o (y, x)
pour se ramener a un automorphisme dont le point d’indétermination propre
est [1:0:0]. On éclate ce point, puis on applique deux fois le lemme 10. On
est alors en situation d’appliquer deux fois le lemme 11 (I’emplacement exact
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des points d’indétermination sur fo,(F3) et foo(F) dépend des coefficients -y
et 3). Enfin on contracte la section s.(Fi), on a ainsi obtenu

g'(x,y) = (x+ By +7°,¥) 0 ,%).

4.2 STRUCTURE DE PRODUIT AMALGAME

Nous voulons montrer que Aut[C?] est non seulement engendré par les
sous-groupes A et E, mais que de plus c’est le produit amalgamé de ces deux
groupes. Autrement dit nous voulons montrer que toutes les relations dans le
groupe Aut[C?] sont induites par les relations dans les groupes A et E. Ceci
revient a montrer qu'une composition

h=ajoeo---0a,0e, avec a; EA\E, e € E\A

n’est jamais €gale a I’identité. Bien noter qu’on peut se restreindre a considérer
des compositions 4 de cette forme, a savoir de longueur paire et commengant
par un automorphisme affine. En effet si h est de longueur impaire (et
supérieure a 3: bien slir si 2 est de longueur 1 ce n’est pas I’'identit€) on
peut faire baisser la longueur de A& par conjugaison. De plus si 2 est de
longueur paire et commence par un automorphisme élémentaire, il suffit de
considérer h~!.

Chaque automorphisme e;, vu comme application birationnelle de P2,
contracte la droite a I’infini sur le point [1:0: 0] (car on suppose e; ¢ A).
De ‘plus, dire que a; ¢ E revient a dire que le point [1:0: 0] n’est pas un
point fixe de @;. On en déduit que ’extension de 2 a P? contracte la droite
a I'infini sur le point a;([1:0:0]), ce qui montre que h n’est pas I'identité.

4.3 PREUVE SUR UN CORPS QUELCONQUE

Etant donné un corps k nous notons A; et Ej; les groupes affine et
élémentaire & coefficients dans k; par k nous désignons la cloture algébrique
de k. Une premicre remarque est que -notre preuve fonctionne sans aucun
changement dans le cas d’un corps algébriquemevnt clos k (la caractéristique
du corps n’a pas d’importance). Les résultats sur la géométrie des surfaces que
nous utilisons, a savoir les propriétés.de la forme d’intersection (formules 5)
et le théoréme de décomposition.de. Zariski sont énoncés avec un tel degré de
généralité par exemple dans le chapitre V de [18]. De méme on peut recopier
’argument ci-dessus-pour montrer que. Aut[k?] est le produit amalgamé de
Ay et Ej. ‘

Considérons maintenant un. corps.- k. non algébriquement clos, et soit g
un élément de Aut[k?’] de degré. 4. On sait déja que g est une composée
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d’automorphismes affines et élémentaires a coefficients dans k. Nous allons
maintenant en déduire qu’il existe une décomposition ne mettant en jeu que
des éléments de A; et LK.

Comme précédemment nous considérons g comme une application bira-
tionnelle de P,% dans lui-méme. Le point crucial est que nous savons que g
admet un unigue point d’indétermination propre, qui est I’image par g~! de
la droite a I’infini. Choisissons un point p de la droite a I’'infini dont les coor-
données homogenes soient dans k et qui ne soit pas le point d’indétermination
de ¢g~! (I'un des deux points [1:0:0] ou [0:1:0] convient). Alors g~ !(p)
est le point d’indétermination propre de g, et est donc contenu dans P%.
Par un raisonnement symétrique le point d’indétermination propre de g~' est
également dans P7. En composant ¢ a droite et a gauche par des éléments bien
choisis de Ay on peut donc se ramener au cas ou les points d’indétermination
de g et g~! sont tous deux [1:0:0]. Ceci revient 4 dire qu’on s’est ramené
au cas ou la décomposition de g dans le produit amalgamé de A; et E;
commence et finit par un automorphisme élémentaire :

g=epo0a,_10---0ajoey avec a; € A \ E;, ¢ € E; \ A;.
‘Une récurrence immédiate montre alors que ¢ s’écrit
: dy.d d
g: (6y) = (e 40y T )

avec 7,0 € k* et di,d, > 1 (on a écrit seulement les composantes
homogenes de plus haut degré). En composant g a gauche par I’automorphisme
(x,y) = (x — s5y®,y) qui est un élément de E; on obtient un élément de
Aut[k?] de degré strictement inférieur a celui de g. Par récurrence sur le
degré ceci termine la démonstration.

NOTE. Alors que cet article était soumis pour publication J. F. de Bobadilla
m’a tres aimablement écrit pour me signaler qu’il était 1’auteur, de maniére
a la fois concomitante et indépendante, d’une preuve du théoréme de Jung
similaire a celle que j’ai exposée ici (voir le chapitre 1 de [5]).
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