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In other words, a manifold X with Sx 0 is piecewise linearly (smoothly)

isomorphic X^#X* where X* is the type of X and b4{X^) 0. As our surgery

arguments above reveal, an isomorphism between X"I~#X* and X^#X'* can

be chosen of the form fptycp* where : Xt —» X^ and p* : X* —¥ X'*

are isomorphisms. Therefore, the set of isomorphy classes of based piecewise

linear E-manifolds of type X* with Z?2 b is in bijection to the set of
isomorphy classes of based piecewise linear E-manifolds with b and

Z?4 0. The same goes for differentiate manifolds of type X*, if X* is not

diffeomorphic to X*#X, X an exotic 8-sphere. Otherwise, we have to divide

by the action of $8. This observation together with Corollary 4.9 settles

Theorem 2.4.

5. Structure of the group AutoL(#f=10S2 x S5))/ AutoL(#f=1(5'2 x D6))

In this section we prove that AutoL(#f=1(S2 x S5)) / AutoL(#f==1(5'2 x Z)6))
is an abelian group which is, moreover, isomorphic to the group FL^ defined
before. This result should be of some independent interest, especially because

the group FL^ is quite well understood by Haefliger's work. For b 1, we
refer to [20] for more specific information.

We begin with the elementary

Lemma 5.1. Let k G AutoL(#f=1(5'2 x S5)) be a commutator. Then k
extends to an automorphism of #bi=l{S2 x D6).

Proof For the proof, we depict #f=1(S'2 x S5) as follows: Let Vh
i 1 be b copies of S2 x D6, and we join Vt and Vi+i by a tube
Ti [-1,1] xD1, i 1,..., b— 1. The result is a manifold W whose boundary
is isomorphic to #f=1(S2 x S5). We make the following normalizations: Write
dVi as (S2 x Df) U (S2 x Dl_), let nt and s-L be the centers of D\ and
Dl_, respectively, and set Sf := S2 x m and SL := S2 x si9 i 1

Choose furthermore points et / wt in (S2 x Df) ft (S2 x D*_), i — 1,..., b,
and suppose that {—1} x D1 c 7) is attached to a disc around wt in dVi
and {1} x D7 c Tt to a disc around ei+\ in dVi+u i 1,...,Z?- 1. Set

T — Uf=/ Ti-

Now, let k fo g of-1O g~lwithG AutoL(#f=1(52 x S5)). As

H2(h, Z) is the identity for every element h e AutgL (#f=, (S2 x S'5)) and 5''±,
i « 1 both represent the same basis for Z), h is isotopic to a

map h' which satisfies either assumption (A) or (B) below.
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(A) : h' is trivial on a tubular neighborhood of Sf which contains
(S2 x£f+)\Int(r), i 1

(B) : h! is trivial on a tubular neighborhood of Sl_ which contains
{S2 x DL) \ Int (T), i=l,...,b.

Next, replace / by an isotopic map f satisfying (A), and g by an isotopic

map g' satisfying (B). Then k' is isotopic to f o g' o//_1 o g'~l. The

map k' is the identity outside Int (dT). It is, furthermore, the identity on a

collar of ({—1} U {1>) x S6 in Rt := [-1,1] x S6 C dTi9 i 1,..., b - 1.

Let k[ be the restriction of k! to Rt, i — 1,..., b. We know that each

k[ is the identity on a collar of {—1,1} x S6 in Rf. Thus, we extend

every k[ to a PL automorphism kt of D1 x {-l}Ui?iUD7 x {1} S1

through idD7X{_i}.uzXx{i}. Now, by [27], Lemma 1.10, p. 8, kt extends to
an automorphism n-L of D8 D1 x [—1,1], i — 1 Thus, the maps
idy. and i ^ 1,... ,b, glue to an automorphism of #f=1(52 x D6) whose

restriction to the boundary is just k!.

This lemma shows that AutgL(#f=1(52 xD6)) is a normal subgroup of

Aut^^CS2 x S5)), and that Aut^L(#f=1(^2 x S5))/ Aut^L(#f=1(52 x D6))
is abelian. Moreover, in Section 4.3, we have already defined a set theoretic

bijection

ß: Aut^(#f=1(V x S5))/AutgL(#f=i(52 x D6)) —> FL,

Theorem 5.2. The map ß is a group isomorphism.

Proof. Since ß is bijective, we have to verify that ß is a homomorphism.
In order to do so, we will construct a group G together with surjective
homomorphisms

XI : g —> AutoL(#f=i(5'2 x Aut£L(#f=i(S2 x D6))

and

Xi: G —> FL&

such that X2 ß o Xi- This will clearly settle the claim.

Before we define G, we recall some constructions and conventions from
[11]. Let Ss {(xo,... ,xg) G R9 | Xq + • • • + xj 1} be the unit
sphere, write Ss D\ U Ds_, and let a : Ss —> Ss be the reflection at
S1 — D\ n Ds_, interchanging the Northern and the Southern hemispheres.

First, let Sb OSf, • • •,S5b) be a 'standard link' in S8 defined as follows: Fix
real numbers —1/2 < <zi <•••< < 1/2, and set
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5? := { Oo,... *9) G Ss I x6 x7 x8 0, x9 at }

We choose, furthermore, framings % : Sf x Z)3 —> S8 which extend over £>6,

such that Tj0ii± x £>3) C and cr o n 77 o (<j|^ x idDs), i 1,..., è.

Let be the resulting framed link in S8 with ± := /jj n£>±. Recall from

Section 1 of [11] that

1. Every framed link I of b five-dimensional spheres in Ss is isotopic to a

link I', such that either (A) V fb + or (B) lr F\D^_ — fb_.
2. If l\ satisfies (A) and l2 satisfies (B), then l\ + l2 is represented by the

link I with lr\D\ l2nD\ and / fl D*_ h n Ds_.

Note that, if we perform surgery along l°b, we get a manifold W W+ U W-
which is isomorphic to #f=10S2 x S6), and

b

W± := (D8± \ Int(Z°)) U ([J(Sj x
i= 1

is canonically isomorphic to x D6). For the rest of the proof, we will
use the description of #f=1(S2 x S5) as dW+ dW-. Set

G := { PL-maps f:S7\ Int (Zg) —» S7 \ Int (Zg) : /|b0Undary id } •

For every / G G, we define (p(f) : #f=1(S2 x S5) —» ^=i(S2 x S5), by extending

/ through the identity on \_\bi==l(Sj x D5). Similarly, define tp(f): S1 —> S7.

Obviously,

Xi : G —> AutJL(#f=i(S2 x S5))/AulSL(#f=i(S2 *
/ — tvCOl

is a surjective homomorphism.
Next, we associate to / G G an element X2(f) F FL^ as follows : First, we

define 11(f) := D\u^(f)Ds_ and the link l'(f) := Then we choose

a piecewise linear homeomorphism F: E(f) —^ S8 and set F(l'(f)).
We have checked before that the isotopy class of lF(f) does not depend on the
chosen homeomorphism, so that xi(f) '= Uf(/)] F FL^ is well defined. To see

that X2 ^ G —» FL^ is a homomorphism, let /,/' be in G. Choose extensions

ip- D+ —> D+ and iß : Ds_ —» Ds_ of ip(f) and f(f'), respectively. We then
define F: H(f) —» Ss as iß on D+ and as the identity on D*_ F' : H(f) —» S8

as the identity on D\ and (^V1 on Ds_, and F" : H(f' of) —» Ss as tß

on D\ and 0//)"1 on Ds_. Then the link lF(f) satisfies (B), the link lF>(f')
satisfies (A), and (2) above shows that [lF><(f' of)] [lF>(ff)] + [lF(f)].

Finally, for given / G G, we can perform surgery on H(f) along l'(f).
The result is W+ Ucp(f) Reading this backwards means nothing else but
ß(Xi.(f)) X2(f) and we are done.
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