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280 A. SCHMITT

addition, relation (3) holds, then [18] ensures that X will carry a smooth
structure (compare Theorem A.4 of [24]), finishing the proof of Part ii). [

4.2 'THE DETERMINATION OF W, IN THE GENERAL CASE

We have a handle decomposition Wy C W, € Wy C Wg C X of X
providing preferred bases b of H,(X,Z) and ¢ of H4(X,Z), respectively. Let
x and y be the dual bases of H*(X,7Z) and H*(X,Z), respectively. Finally,
let y* be the basis of H*(X,Z) which is dual to y via ~x.

We find oW, = #f’zl(S2 x $3), and W, is determined by the ambient
isotopy class of a framed link of 3-spheres in W, with b’ components. Let
fi: 8 x D* — W, be the k™ component of that link and gi := fi|sx {0} »
k=1,...,0 . In the notation of Section 3.6, we write [gi] € W3(8W2\Uk¢j S;)
in the form (ff,i=1,...,b,l5,1 <i<j<bAgj#k, k=1,...,0. To
see the significance of the I¥ and lg-, note that, by Remark 3.4, W, UH} C X
is homotopy equivalent to (\/f?:1 $?) Ug, D*. The cohomology ring of that
complex has been computed in Proposition 3.11, so that the naturality of the
cup product implies the following formulae for the cup products in X :

bl
_ k * . .
inxj—E lij'yk7 [ #],
k=1
bl
k % .
inxi:E Eoye, i=1,...,b.
k=1

Therefore, the lﬁ-‘ and lg- are determined by ox and ~x (used to compute y*),
in fact lf = ’Yx((S(xi ® x,-) Y yk) and lg = ’Yx(d(xi & xj) 0% yk).

To determine the A; and the framings, we proceed as follows: Look
at the embedding #2_,(S* x $°) < X. There exist b embedded 2-spheres
S2,...,S% which represent the basis b and which do not meet the given link.
Finally, #2_,(S? x $°) obviously possesses a regular neighborhood in X which
is homeomorphic to #2_ (5% x $°) x D!. Thus, we can perform “surgery in
pairs” as described in Section 3.1. The result is a 3-connected manifold X*
containing S’ . It is by construction the manifold obtained from the framed link
in 7 derived from the given one in #2_ (5% x §%) (cf. Section 4.1). We will be
finished, once we are able to compare the invariants of X to those of X*. To
do so, we look at the trace of the surgery, i.e., at Y = (X x )UH; U---UHj3,,
the 5-handles being attached along tubular neighborhoods of the S; x {1} in
X x{1}. Then Oy =X U X .
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The Mayer-Vietoris sequence provides the isomorphisms

b/
Huy(X,Z) = Hy(X \ | [(Si x D), Z) = Hy(X", Z).

i=1

Set H := Hy(X \ 2, (S: x D), Z) . By Lefschetz duality (5], (28.18)), there
is for each g € N a diagram (omitting Z-coefficients)

H YY) — H?Y9Y) — HYY,0Y) —  HI(Y)

4) |= lg’ lg lg

Hlo_q(Y, aY) — Hg_q(aY) — Hg_q(Y) — Hg_q(Y,aY)

where the left square commutes up to the sign (—1)7~! and the other two
commute. We first use it in the case ¢ = 5. Look at the commutative diagram

H —= H,X*,Z)

-

H4(X> Z) — H4(Y7 Z) )

in which all arrows are injective, because Hs(Y,X;Z) =0 = Hs(Y,X*;Z) (cf.
[17], p. 198). Using the identification H4(0Y,Z) = H & H, we find

5) Im(Hs(Y,0Y;Z)) = { 0, —y) e HOH } .

Similar considerations apply to the case ¢ = 9. Taking into account that X*
sits in Y with the reversed orientation, (4) shows that the forms ~yx and ~yx«,
both defined with respect to the preferred bases, coincide. In the same manner,
the pullbacks of p;(Y) to H*(X,Z) and H*(X* Z), respectively, agree. Since
X and X* are the boundary components of Y, these pullbacks are p;(X) and.
p1(X™), respectively, and we are done. [

4.3 MANIFOLDS WITH GIVEN INVARIANTS

One might speculate, especially in view of the classification of E-manifolds
in dimension 4 and 6, that the invariants Jx, vx, and p;(X) might suf-
fice to classify E-manifolds with w,(X) = O in dimension 8. However,
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