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of the fact that the restricted holonomy group of an irreducible Lorentzian
manifold is SOy(n, 1), [B1], [B2].

At least a sketch of proof is given for every result mentioned. In some
cases we include complete proofs if they are hard to find in the literature.

2. RIEMANNIAN HOLONOMY

We first recall some basic facts on holonomy. For more details we refer
to [Be, Chapter 10]. Let M be a Riemannian manifold, which we will always
assume to be connected. If we fix a point p € M, the parallel transport 7
along any loop 7 at p determines an isometry of 7,M. The set of all such
isometries is a subgroup ®,(M) of the orthogonal group O(7,(M)), called the
holonomy subgroup of M at p. If g is another point of M, (3 a path from p
to g and 75 the parallel transport along (3, we have ®y(M) = 73 Op(M) 74 t
so that holonomy groups at different points are conjugated and one speaks of
holonomy group of M neglecting the base point. There is a variant of this
definition, the restricted holonomy group @ (M), obtained by considering
only those loops which are homotopically trivial. This group actually behaves
more nicely: it is a connected,. closed Lie subgroup of SO(7,M) and is in
fact the identity component of ®,(M). It can be regarded as the holonomy
group of the universal covering space of M.

Holonomy is closely tied to curvature, which is roughly an infinitesimal
measure of holonomy. More precisely, the Ambrose-Singer Holonomy Theorem
states that the Lie algebra of the holonomy group is spanned by the curvature
operators R.,, x,y € T,M, together with their parallel translates along loops
at p.

In order to describe the importance holonomy plays in intrinsic geometry,
we recall an important property of holonomy, the so-called holonomy principle :
evaluation at p establishes a one-to-one correspondence between parallel tensor
fields and tensors invariant under holonomy. The existence of holonomy
invariant tensors has strong consequences on the geometry. Here are some
examples of this situation.

e For a generic metric ®,(M) = O(T,M), and there is no invariant tensor
besides those generated by the metric (see e.g. [Iw]).

e The existence of an invariant subspace implies that the manifold locally
splits (de Rham Decomposition Theorem). Thus one can always restrict
attention to irreducible holonomy actions.
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e It is a classical result of Cartan that, if the Riemannian curvature tensor of
a Riemannian manifold M is invariant under parallel transport, M is locally
symmetric, i.e., at each point p in M there exists an open ball B,(p) such that
the corresponding local geodesic symmetry s, is an isometry. A Riemannian
manifold is called a symmetric space if at each point p € M such a local
geodesic symmetry extends to a global isometry s,: M — M. Symmetric
spaces play a prominent role in Riemannian geometry and are very tightly
connected to holonomy.

Indeed, let M be an irreducible symmetric space, which can be represented |
as a quotient M = G/K, where G is the identity component of the isometry
group of M and K is the isotropy subgroup at some point p € M. One can |

show that the isotropy representation of K on T,M agrees with the (effective)

representation of the restricted holonomy group ®;(M) on T,M. Observe

that, by the Ambrose-Singer Holonomy Theorem and the invariance of the
curvature tensor by parallel transport, the holonomy algebra is spanned by
the curvature operators R,,, x,y € T,M. Now the curvature operators allow
to recover the symmetric space by a classical construction due to E. Cartan.
We briefly outline this construction, which can actually be carried out for any
algebraic curvature tensor on some vector space V (i.e., a tensor with the
same algebraic properties as the curvature tensor, including the first Bianchi
identity) which is invariant by the action of a group K (i.e. k- R = R, for
any k € K). Indeed, one can construct an orthogonal symmetric Lie algebra
g, by setting g := €@ V and defining

[B,C] = BC — CB, B,Cc ¢,
[x,y] = Ryy, x,y€V,
[A, z] = Az, Act zeV.

Passing to Lie groups one locally recovers G/K (globally if G/K 1s simply
connected). '

Yet another characterization of symmetric spaces in terms of holonomy is
the following. One can define the transvection group of a Riemannian manifold
N as the group Tr(N) of isometries of N that preserve any holonomy subbundle
Hol, N, v € T,N. Recall that Hol, N is the subset, which turns out to be a
subbundle, of the tangent bundle TN obtained by parallel transport of v along
any piecewise differentiable curve starting from p. More concretely, Tr(N) is
the group of all isometries ¢ such that, for any p € N, there exists a piecewise
differentiable curve -« joining p and @(p) such that ¢,,: T,N — TypN
coincides with the parallel transport along .

|
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Now, a symmetric space M can be characterized by the fact that the
transvection group acts transitively on any holonomy subbundle. This is to
say that, for any p,q € M, for any piecewise differentiable curve vy from p
§to g, there exists an isometry ¢ such that g(p) = ¢ and ¢.,: T,M — T,M
coincides with the parallel transport along ~.

1o If the Ricci tensor is parallel, then M is a product of Einstein manifolds
| (see e.g. [Be]).
e If there is a complex structure J on a Riemannian manifold M which

+is orthogonal and parallel, then M is a Kdihler manifold. In this case the
‘holonomy group 1s contained in the unitary group U(T,M).

Thus, the existence of a geometric structure on a Riemannian manifold
‘can be read in terms of the holonomy invariance of a tensor and this in turn
innphes a reduction of the holonomy group to a proper subgroup of O(T,M).
A fundamental result for the restricted holonomy group O (M) of a
Rlemanman manifold is Berger’s Theorem ([B1], see also [Be], [Sal], [Sim]),
1wh1ch classifies the possible irreducible actions of the restricted holonomy
‘group on the tangent space at any point: @7 (M) is either transitive on the unit
~ sphere of T,M or it acts as the isotropy representatmn of a symmetric space
‘(which is also called s-representation) and M is in fact locally symmetric. If
- the action of @, (M) is transitive on the unit sphere of 7,M and is irreducible,
then @7 (M) is one the following groups: SO(n), U(n/ 2) (n>4), SUn/2)
(n > 4), Sp(l) - Sp(n/4) (n > 4), Sp(n/4) (n > 4), Spin9) (n = 16),
Spin(7) (n=18) or Gy (n="7).
~ The reduction of @/ (M) to any of the above groups corresponds to some
- geometric structure on M.

3. NORMAL HOLONOMY

Let M be a submanifold of a space of constant curvature M. We will
“denote by a its second fundamental form, by A its shape operator sending
~each normal vector £ to the self adjoint endomorphism A of the tangent
| space T,M, with (Aex,y) = (a(x,y),€) (x,y € T,M) and by vM the normal
' bundle, endowed with the normal connection V1. We denote by (I)Lp the
- normal holonomy at p € M, i.e. the holonomy at p of the normal connection.
~ Recall that there are mainly two possible reductions for submanifolds of
' spaces of constant curvature. If a submanifold M of M is contained in a totally

geodesic submanifold N of M, then one can regard it as a submanifold of
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