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By the transversality theorem ([17], IV.(2.4)), one sees that we may assume

Sf n 9j(S3) 0 for all i and j.
By Corollary 3.9, the ambient isotopy class of the embedding gk is

determined by the element pk := \M\ 7r3(Wt), Wk W \ \J#k $(&),
k 1,... ,b'.We clearly have (compare [8])

it3(Wk) ir3(S2 V • V S2y S3 V • • • V

bx (b' — l)x

so that the Hilton-Milnor theorem yields

ft3(Wk} 0 TT^iS2) © 0 ^(S3) ® 0 7T3(53)

i= 1 1 <i<j<b j^k

Hence, we write pk as a tuple of integers :

<Pk (A i-\,...,b\ l\j, \<j j ^ k)

Observe that, for j / k, pk is mapped under the natural homomorphism

TT3(W0 — H3(Wk,Z) -^H3(w\ gj(S3),Z) Z)

to the image of the fundamental class of S3 under Thus, Àkj is just the

'usual' linking number of the spheres gk(S3) and gfS3) in W (compare [8]).

3.7 Links of 5-spheres in S8

Let TCPbL(C } be as before, and let C^L(C } be the group of isotopy classes

of piecewise linear (smooth) embeddings of b disjoint copies of S5 into Ss.

For b — 1, these groups are studied in [10], [19], and [20]. A brief summary
with references of results in the case b > 1 is contained in Section 2.6 of
[11]. We will review some of this material below.

Proposition 3.15. We have TCf°° Z2.

Proof. Since tt5(SO(3)) Z2, the standard embedding of S5 into S8

with its two possible framings provides an injection of Z2 into TC^c By
Zeeman's unknotting theorem 3.10, the map Z2 —» TCP^ is an isomorphism.
As remarked in Section 2.6 of [11], TCPP is isomorphic to the group
of h-cobordism classes of framed submanifolds of S8 which are homotopy
5-spheres. Moreover, by [10] and [19], there is an exact sequence

> <d6 —» TCcx
°°

—> Tti —» >â5 —> • • •

As the groups $5 and $6 of exotic 5- and 6-spheres are trivial [17], our
claim is settled.



276 A. SCHMITT

Let Lfc C Cb°° be the subgroup of those embeddings for which the

restriction to each component is isotopic to the standard embedding. As
observed in Section 2.6 of [11], Zeeman's unknotting theorem 3.10 implies
that hb ClL. The following result settles Proposition 2.3 :

Corollary 3.16. TCl°° 9* ^ Lb ©® Z2.
i=i

For the group Lb, Theorem 1.3 of [11] provides a fairly explicit description
as an extension of abelian groups. For this, consider the Z?-fold wedge product

Vil S2 of 2-spheres together with its inclusion i: \Jb=l S2 M- Xf=1 S2 into the

Z?-fold product of 2-spheres. Finally, let pp \Jb=l S2 —» S2 be the projection
onto the zth factor, i— 1,..., b. Set, for m= 1,2,...,

b

A Zj:=Ker(7rjpj) : vrm(\/ S2) —> ^m(S2)), j=\
1=1

K :=©A Zj
j= 1

and

b

Tib•=Ker(7rm(i): S2) -4 ©7rm(S2))
1=1 1=1

and define

nnm a m rrm+1
Wb • JH * llb

on by w(a) := [a,i;]. Here, [.,.] stands for the Whitehead product

inside the homotopy groups of \/bi=lS2 and S2 <—» Vf=i f°r the

inclusion of the zth factor, i 1 Theorem 1.3 of [11] yields in

our situation

THEOREM 3.17. There is an exact sequence of abelian groups

0 —>• Coker(w^) —> Lb—s- Ker(w|) —> 0.

We remark that the formulas of Steer [33] might be used for the

explicit computation of Whitehead products and thus for the determination
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of Coker(wf) and Ker(wb). The free part of Lb, e.g., can be obtained quite

easily. We confine ourselves to prove the following important fact.

COROLLARY 3.18. The group Lb has positive rank for b > 2.

Proof Let Lb := ®Z>1L^;/ be the free graded Lie algebra with

L^i := ®f=1 Z • et. For I 2,3,... let e\,..., eld[ be a basis for

Lbj consisting of iterated commutators of the et. By assigning Lt to

et, every iterated commutator c G Lbj in the et defines an element

a(c)G 7T;_)_1 (Vf=l V)-

To settle our claim, it is certainly sufficient to show that Coker(u|) has

positive rank. Now, by the Hilton-Milnor theorem

nü ® ®7T7(5') • a(4_1) •

1=3k= I

Note that tt7(S1) is finite for I £ {4,7} (see [32] and [35] for the explicit
description of those groups). The Hopf fibration S7 —^ S4 [32], on the other
hand, yields a decomposition tt7(S4) 7r60S,3)®7r7(S'7) Zi2®Z. Therefore, it
will suffice to show that the free part of is mapped to 0^ tt7(S7) a(ej).
For j — 1,..., b, we have

A lj© 7T6(52) • H© 00 w6(S<)

i^j l=3k=l

The group tt6(S1) is finite for I < 6, and we obviously have [a(e5k),Lj]
®([e5k,ej]). If we expand the commutator [e5k, efi in the basis e\,... we
find an expansion for [cd>f),®l in terms of the a{e\).

COROLLARY 3.19. The set of GLb(Z)-equivalence classes of elements in
Lb is infinite for b> 2.

Proof We have seen that the GL*(Z)-set L*j3 is contained in the
GL^(Z)-set Lb. The GL^(Z)-action on Lb?3 originates from a homomorphism
GLb(Z) —> GL(LM) := Autz(L^;3). In particular, any matrix g e GL^(Z)
preserves the absolute value of the determinant of any <73 elements in Lb 3.
This implies, for instance, that a • e\ and b • e\ cannot lie in the same
GL^(Z) -orbit, if 0 < a < b.
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