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By the transversality theorem ([17], IV.(2.4)), one sees that we may assume
S? N gi($?) = @ for all i and j.

By Corollary 3.9, the ambient isotopy class of the embedding gk 1S
determined by the element ¢ = [gi] € m3(Wy), Wi = W\Uj?ék gj(S3),
k=1,...,b'. We clearly have (compare [8]) ‘

(W) = m3($2V - VSV S V.-V S

]
~\~

bx b’ —=1)x

so that the Hilton-Milnor theorem yields
b

W) =P mSH e P 7S o Pms(s).

i=1 1<i<j<b j#k

Hence, we write ¢y as a tuple of integers:

oe= (I i=1,...,b; K 1<i<j<b; M\, j#k).

ijs
Observe that, for j # k, @i is mapped under the natural homomorphism
w3(We) — Hy(Wi, Z) — H3 (W \ g(5),Z) (= Z)

to the image of the fundamental class of $* under gj.. Thus, ) is just the
‘usual’ linking number of the spheres g;(S?) and g;(S®) in W (compare [8]).

3.7 LINKS OF 5-SPHERES IN S%

Let ]—"CEL(COO) be as before, and let CZI;L(COO) be the group of isotopy classes
of piecewise linear (smooth) embeddings of b disjoint copies of S5 into S®.
For b =1, these groups are studied in [10], [19], and [20]. A brief summary
with references of results in the case b > 1 is contained in Section 2.6 of
[11]. We will review some of this material below.

PROPOSITION 3.15. We have FCS~ = FCP“~17,.

Proof. Since ms(SO(3)) = Z,, the standard embedding of S° into S®
with its two possible framings provides an injection of Z, into fCll)L(COO). By
Zeeman’s unknotting theorem 3.10, the map Z;, — FC.~ is an isomorphism.
As remarked in Section 2.6 of [11], FC - is isomorphic to F1J, the group
of h-cobordism classes of framed submanifolds of $® which are homotopy
5-spheres. Moreover, by [10] and [19], there is an exact sequence

o 9 — FCYT s FY— 9 — -

As the groups ¥ and 9¥° of exotic 5- and 6-spheres are trivial [17], our
claim is settled. [
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Let L, C cg°° be the subgroup of those embeddings for which the
restriction to each component is isotopic to the standard embedding. As
observed in Section 2.6 of [11], Zeeman’s unknotting theorem 3.10 implies
that L, = CF*. The following result settles Proposition 2.3 :

o b
COROLLARY 3.16. FC{ = FClr=L,ePZ,.

i=1

For the group L, Theorem 1.3 of [11] provides a fairly explicit description
as an extension of abelian groups. For this, consider the b-fold wedge product
\/o_, S of 2-spheres together with its inclusion i: \/%_, §% < X5_, 2 into the
b-fold product of 2-spheres. Finally, let p;: \/%_, $2 —s S2 be the projection
onto the i factor, i=1,...,b. Set, for m=1,2,...,

b
Zii — Ker(wm(pj): wm(\/ Sz) — 7rm(Sz))J j=1,...,b,

i=1

b
Ay = DAY,
j=1
and

1

b
7= Ker(mu(i): mu(\/ %) —

i=1

b
Tm(S?)) ,
=1
and define
wi: Af — Tt

on Ay; by wy(e) := [e,]. Here, [.,.] stands for the Whitehead product
inside the homotopy groups of \/%_,$? and 4: $% — \/2_|8% for the
inclusion of the i® factor, i = 1,... ,b. Theorem 1.3 of [11] yields in
our situation

THEOREM 3.17. There is an exact sequence of abelian groups

0 — Coker(w$) — L, — Ker(w;) — 0.

We remark that the formulas of Steer [33] might be used for the
explicit computation of Whitehead products and thus for the determination
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of Coker(w$) and Ker(w3;). The free part of L;, e.g., can be obtained quite
easily. We confine ourselves to prove the following important fact.

COROLLARY 3.18. The group L, has positive rank for b > 2.

Proof. Let L, := P> Lss be the free graded Lie algebra with
Ly1 = @?:1Z'€i- For I = 2,3,..., let ell,...,eﬁll be a basis for
Ly, consisting of iterated commutators of the e;. By assigning ¢ to
e;, every iterated commutator ¢ € L;; in the e; defines an element

ale) € myi (Vo $%).

To settle our claim, it is certainly sufficient to show that Coker(wg) has
positive rank. Now, by the Hilton-Milnor theorem

7 di—1
1] =2 P Pmish - alel ™).
1=3k=1

Note that m7(S’) is finite for [ ¢ {4,7} (see [32] and [35] for the explicit
description of those groups). The Hopf fibration S7 — S$* [32], on the other
hand, yields a decomposition 77(S%) = 76(S>) @ m7(S7) = Z1, ®Z. Therefore, it
will suffice to show that the free part of AS is mapped to EBJ‘-jil 77(87) - ou(ef).
For j=1,...,b, we have

6 di—1

Ay 2@ m6(S?) 1 ® DD (S - el

The group me(S’) is finite for I < 6, and we obviously have [ade}), 1] =
a([ey, e;]). If we expand the commutator [ei,ej] in the basis e?, . ,egé, we
find an expansion for [a(e,?), tj] in terms of the oz(e,?). L]

COROLLARY 3.19. The set of GLy(Z)-equivalence classes of elements in
Ly is infinite for b > 2.

Proof. We have seen that the GL,(Z)-set Ly3 is contained in the
GLy(Z)-set L. The GL,(Z)-action on L, 5 originates from a homomorphism
GLy(Z) — GL(Lp3) := Autz(Ly3). In particular, any matrix g € GL,(Z)
preserves the absolute value of the determinant of any d; elements in Lys.
This implies, for instance, that a - e and b - e} cannot lie in the same
GLy(Z)-orbit, if 0 <a <b. []
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