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274 _ A. SCHMITT

3.5 PONTRJAGIN CLASSES AND m3(SO(4))

Vector bundles of rank 4 over $* are classified by elements in m3(SO(4)).
In our setting, such vector bundles will appear as normal bundles. We recall,
therefore, the description of that group and relate it to Pontrjagin classes and
self intersection numbers.

First, look at the natural map w3(SO(4)) — w3 (SO(4) / SO(3)) = m3(S?).
This map has a splitting ([32], §22.6) which induces an isomorphism

m3(SO(4)) = m3(SO(3)) ® T3(S°).

Let a3 be the generator for m3(SO(3)) = Z from [32], §22.3, and (5 :=
[idg] € m3(S?), so that we obtain the isomorphism Z & Z — m(SO4)),
(k1, kp) — kyaz + k03 . Finally, the kernel of the map m3(SO(4)) — m3(SO)
to the stable homotopy group is generated by —a3+2085 ([32], §23.6), whence
[23], (20.9), implies

PROPOSITION 3.13. Let E be the vector bundle over S* defined by the
element kios + ko83 € m3(SO4)). Then

p1(E) = £(2ki + 4k,) .

COROLLARY 3.14. Let f: 8* — M be a differentiable embedding of
S* into the differentiable 8-manifold M. Let E := f*Ty/Tss be the normal
bundle. Then the self intersection number s of f(S*) in M satisfies

2s = pi(E) mod 4.

Proof. If E is given by the element kjas+ky03 € m3(SO(4)), then s = k;
([171, (5.4), p.72). Since pi(E) = £(2k, + 4k;), the claim follows. L]

3.6 LINKS OF 3-SPHERES IN #7_ (5% x §°)

If X is a closed E-manifold of dimension 8 with w(X) = 0, then
W, = #2_,(5? x D%), b = by(X), by Lemma 3.5. Thus, W, is determined by
a framed link of 3-spheres in W, = #2_,(S? x $°). Therefore, we will now
classify such links.

So, let W := #2_,(S? x $°) be a b-fold connected sum. We can choose
b disjoint 2-spheres S?, i=1,...,b, embedded in W and representing the
natural basis of Hy(W,Z). One checks that the homotopy type of W is given
up to dimension 4 by the b-fold wedge product S?V---V S2. Suppose we are
given a link of 4’ three-dimensional spheres, i.e., we are given b’ differentiable
embeddings g;: > — W, i=1,...,b', with g(5?) N gi(S®) = @ for i #j.
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By the transversality theorem ([17], IV.(2.4)), one sees that we may assume
S? N gi($?) = @ for all i and j.

By Corollary 3.9, the ambient isotopy class of the embedding gk 1S
determined by the element ¢ = [gi] € m3(Wy), Wi = W\Uj?ék gj(S3),
k=1,...,b'. We clearly have (compare [8]) ‘

(W) = m3($2V - VSV S V.-V S

]
~\~

bx b’ —=1)x

so that the Hilton-Milnor theorem yields
b

W) =P mSH e P 7S o Pms(s).

i=1 1<i<j<b j#k

Hence, we write ¢y as a tuple of integers:

oe= (I i=1,...,b; K 1<i<j<b; M\, j#k).

ijs
Observe that, for j # k, @i is mapped under the natural homomorphism
w3(We) — Hy(Wi, Z) — H3 (W \ g(5),Z) (= Z)

to the image of the fundamental class of $* under gj.. Thus, ) is just the
‘usual’ linking number of the spheres g;(S?) and g;(S®) in W (compare [8]).

3.7 LINKS OF 5-SPHERES IN S%

Let ]—"CEL(COO) be as before, and let CZI;L(COO) be the group of isotopy classes
of piecewise linear (smooth) embeddings of b disjoint copies of S5 into S®.
For b =1, these groups are studied in [10], [19], and [20]. A brief summary
with references of results in the case b > 1 is contained in Section 2.6 of
[11]. We will review some of this material below.

PROPOSITION 3.15. We have FCS~ = FCP“~17,.

Proof. Since ms(SO(3)) = Z,, the standard embedding of S° into S®
with its two possible framings provides an injection of Z, into fCll)L(COO). By
Zeeman’s unknotting theorem 3.10, the map Z;, — FC.~ is an isomorphism.
As remarked in Section 2.6 of [11], FC - is isomorphic to F1J, the group
of h-cobordism classes of framed submanifolds of $® which are homotopy
5-spheres. Moreover, by [10] and [19], there is an exact sequence

o 9 — FCYT s FY— 9 — -

As the groups ¥ and 9¥° of exotic 5- and 6-spheres are trivial [17], our
claim is settled. [
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