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ON THE CLASSIFICATION OF CERTAIN PIECEWISE LINEAR
AND DIFFERENTIABLE MANIFOLDS IN DIMENSION EIGHT
AND AUTOMORPHISMS OF #2_, (5% x $°)

by Alexander SCHMITT

ABSTRACT. In this paper, we will be concerned with the explicit classification of
closed, oriented, simply-connected spin manifolds in dimension eight with vanishing
cohomology in the odd dimensions. The study of such manifolds was begun by
Stefan Miiller. In order to understand the structure of these manifolds, we will
analyze their minimal handle presentations and describe explicitly to what extent these
handle presentations are determined by the cohomology ring and the characteristic
classes. It turns out that the cohomology ring and the characteristic classes do not
suffice to reconstruct a manifold of the above type completely. In fact, the group

Auto (#-,(S*> x §)) / Auto (#2,(S* x D%)) of automorphisms of #7_;(S* x $°) which
induce the identity on cohomology modulo those which extend to #2_,(S* x D°) acts
on the set of oriented homeomorphy classes of manifolds with fixed cohomology ring

and characteristic classes, and we will be also concerned with describing this group
and some facts about the above action.

1. INTRODUCTION

The classification of topological manifolds up to homeomorphy is an
extremely interesting and important problem. Let us restrict our attention to the
case of closed (i.e., compact without boundary) and oriented simply connected
manifolds. As a general classification scheme, surgery theory [1] solves this
problem for manifolds within a given homotopy type, e.g., that of a sphere.
Another approach to the classification “up to finite indeterminacy”, using
rational homotopy theory, is due to Sullivan [34]. Nevertheless, there are only
a few explicit results which characterize the oriented homeomorphy type of a
manifold in terms of easily computable invariants. They usually require many
simplifying assumptions, such as high connectedness [36]. In this paper, we will
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consider even cohomology manifolds (or E-manifolds, for short) in dimension
eight, by which we mean closed, oriented, simply connected, piecewise linear
or smooth manifolds all of whose odd-dimensional homology groups with
integer coefficients vanish. The universal coefficient theorem implies that
all homology groups of an E-manifold are without torsion. Moreover, since
H3(X, Z,) = 0 for an E-manifold, two E-manifolds of dimension at least 6
are homeomorphic (as topological manifolds) if and only if they are piecewise
linearly homeomorphic [16].

Though the class of E-manifolds is fairly restricted, it still contains many
interesting examples from various areas of mathematics, such as the piecewise
linear manifolds underlying the toric manifolds from Algebraic Geometry [4]
or the polygon spaces [12], to mention a few. So far, E-manifolds have been
classified up to dimension 6. Of course, in dimension 2 there is only S?,
in dimension 4, there is the famous classification result of Freedman various
interesting aspects of which are discussed in [15], and finally in dimension 6,
the classification was achieved by Wall [37] and Jupp [14]. Various applications
of the latter result to Algebraic Geometry are surveyed in [26]. Finally, we
refer to [2], [3], and [29] for the determination of projective algebraic structures
on certain 6- and 8-dimensional E-manifolds.

ACKNOWLEDGEMENTS. My thanks go to J.-C. Hausmann for his interest
in this work and for pointing out to me that an E-manifold of dimension eight
is actually not determined by its classical invariants.

2. STATEMENT OF THE RESULT

We now discuss the main result of this note, namely the classification of

E-manifolds of dimension 8 with vanishing second Stiefel-Whitney class in

the form of an exact sequence of pointed sets. This result was motivated by the
work [24]. In order to state it in a more elegant form, we will work with based
manifolds. By a based piecewise linear (smooth) E-manifold, we mean a triple
(X, x,y), consisting of a piecewise linear (smooth) E-manifold X and bases
x=(x1,..., %00 for HXX,Z) and y = (y1, . .., Ypan) for H*(X,Z). Recall
that by definition E-manifolds are oriented, so that the above data specify a
basis for H*(X, Z), such that the bases for H'(X,Z) and H3~/(X,Z) are dual to
each other with respect to the cup product. An isomorphism between piecewise
linear (smooth) based E-manifolds (X,x,y) and (X',x',y") is an orientation
preserving piecewise linear (smooth) isomorphism f: X — X’ with f*(x') = x
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and f*(y) = y. We denote by JPUCT)(b,b') the set of isomorphy classes
of piecewise linear (smooth) based E-manifolds (X,x,y) of dimension eight
with vanishing second Stiefel-Whitney class, by(X) = b, and bs(X) = b'.

2.1 THE CLASSICAL INVARIANTS

In the terminology of [24], the classical invariants of an E-manifold consist
of its cohomology ring, the Stiefel-Whitney classes, the Wu classes, the
Pontrjagin classes, the Euler class, the Steenrod squares, the reduced Steenrod
powers, and the Pontrjagin powers. For an eight-dimensional E-manifold
X with vanishing second Stiefel-Whitney class, the main result of [24]
states that the classical invariants are fully determined by the following
invariants :

1. The cup product map

ox: SPH*(X,Z) — H*(X,Z)
xQx — xUX .

2. The intersection form

vx: SPHYX,Z) — Z
y®y — (yUy)IX].
Here, [X] € Hg(X,Z) is the fundamental class determined by the orienta-

tion. ‘
3. The first Pontrjagin class p;(X) € H*(X, Q) .

REMARK 2.1.  The above invariants are not independent. By associativity
of the cohomology ring, the following relation holds

(1) 53(1) € S'HA(X, 2)”,
1.e.,
Tx (Ox (X1 ® x2) ® Sx(x3 ® x4)) = 7x (x(x1 ® x3) ® Sx(xy ® x4))

for all xi,x,,x3,%4 € H¥(X,Z). Furthermore,

P———
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PROPOSITION ([24], Prop. A.7 or Cor. 3.14 below). For every element
y € H*(X,Z) we have

2) p1(X)y=2y* mod 4.

Note that this implies p;(X) € H*(X,Z). If, in addition, X is differentiable
then for every integral lift W € H*(X,Z) of w,(X) one has

(3) 3p1(X)* — 14p,(X)W? + TW* = 12 Sign(yx) mod 2688 .

Miiller has also shown [24] that these relations imply all the other relations
among the classical invariants of X. Conversely, a piecewise linear manifold

X whose invariants obey relation (3) admits a differentiable structure [18],
[24].

We are led to the following algebraic concept: A system of invariants of
type (b,b’) is a triple (0,7, p), consisting of
e a homomorphism §: S2Z®° — 728"
e a unimodular symmetric bilinear form ~: $2Z® — Z, and
e an element p € Z®' .
We denote by Z(b,b’) the set of systems of invariants of type (b,d’).
Now, let (X,x,y) be a based eight-dimensional E-manifold. This defines
a set of invariants _Z(X,M) = (0x, vx, p1(X)) of type (br(X), bs(X)). Thus, we
have natural maps

ZPHC b by FPHC) (b by — Z(b, b))

[X7 'Z’-? X} — Z(X,Q_C,X) :
It will be the concern of our paper to understand the maps ZPMC™) as
well as possible. The first result can be easily derived from Wall’s work [36]
and deals with the case b = 0. It will be proved in detail in Section 4.1.

THEOREM 2.2. i) The map ZFY(0,b') is injective. Its image consists
precisely of those elements which satisfy the relations (1) and (2).

ii) Given two smooth based E-manifolds (X,y) and X',y') with
by(X) = 0 = by(X") and Zxy) = Zx ), there exists an exotic 8-sphere
2 such that (X#X,y) and X, X/) are smoothly isomorphic. In particular,
the fibres of Z€~ have cardinality at most two. The image of ZC~ consists
exactly of those elements which satisfy the relations (1), (2), and (3).
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2.2 MANIFOLDS WITH TRIVIAL CUP FORM dy

In addition to describing the explicit geometric meaning of the system
of invariants of an E-manifold X with w,(X) = 0, we will describe those
manifolds X for which the cup form Jdx vanishes. ‘

For any b > 0, let FCEL(COO) be the group of isotopy classes of piecewise
linear (smooth) embeddings of b disjoint copies of S° x D? into S3. The
following result will be established in Section 3.7.

PROPOSITION 2.3. FL, := FCS = FCt.

Given an element [/] € FL,, we can perform surgery along the link
[ and get a smooth based E-manifold (X(/),x(/)) with w,(X) = 0 and
bs(X) = 0, which is well defined up to smooth isomorphy of based
manifolds.

We will also use the following notation: Fix a pair (vy,p) € Z(0,b")
which satisfies relation (2) (and (3)) and denote by J™MC™)(b, ~, p) the set of
isomorphy classes of based piecewise linear (smooth) E-manifolds (X, x,y)
with wy(X) = 0, by(X) = b, 7x = v, and p;(X) = p. Pick a three-
connected piecewise linear (smooth) based E-manifold (X, Xo) with yx, =y

and p;(Xo) = p. In the smooth case, let ¥® = Z, [17] be the group of
exotic 8-spheres, and set ¥(Xp) := 98, if X, is not diffeomorphic to Xp#X,
¥ a generator for 98, and ¥(Xp) := {[S®]} C ¥® otherwise. Now, we define
maps

K™(b,,p): FLy — 3(b,7,p)
[1— |XQ#Xo,x(D, y,
and

K%, (b,7,p): FLy @9(Xo) — 37 (b, 7, p)

(U1, [Z)) — [XO#XHE, 50D, y,|

In JPXC™)(b, ~, p), we mark the class {(#?:1(52 x §0))#Xo, x, Xo}’ where x

comes from the natural basis of H*(#5_,(S? x $°),Z). Then our main result
1s the following
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THEOREM 2.4. i) For every b > 0 and every pair (v,p) which satisfies
the relation (2),

PL p
(1} —  FL, O 5P 4 ) — Hom(S2ZP,ZY)

1 — [trivial link] X, x,y] — Ox

Is an exact sequence of pointed sets.

i1) For every b > 0 and every pair (vy,p) which satisfies the relations (2)
and (3), |

Kg" (0D oo :
1} — FL,@dXo) °——b " 3°(b,~,¢) — Hom(s*Zb,7")

1 —— [trivial link] [X,g, )j — Ox

is an exact sequence of pointed sets.

The proof will be given in Sections 4.2 and 4.3.

REMARK 2.5. 1) In the PL setting, we will show that the inclusion of FL,
into J*L(b, v, ¢) extends to an action of FL, on J*%(b,, ), such that the
orbits are the fibres of the map [X,x,y] — 0x.

i1) On all the sets occurring in Theorem 2.4 there are natural (GL,(Z) X
GL,/(Z))-actions, and the maps are equivariant for these actions. Therefore,
by forming the equivalence classes with respect to these actions, we get the
classification of E-manifolds with vanishing second Stiefel-Whitney class up
to orientation preserving piecewise linear (smooth) isomorphy.

i11) We will discuss in Section 3.7 the structure of the group FL,. It turns
out that it is finite if and only if b = 1. It follows easily that the set of
GL,(Z)-equivalence classes in FL;, is infinite for » > 2. Thus, the tohomology
ring and the characteristic classes classify E-manifolds of dimension eight up
to finite indeterminacy only if the second Betti number is at most one.

The starting point of our proof of the above results will be the theory of
minimal handle decompositions of Smale which states that X can be obtained
from D® by first attaching b,(X) 2-handles, then b4(X) 4-handles, then
b,(X) 6-handles and finally one 8-handle. At each step, the attachment will
be determined by the isotopy class of a certain framed link in a 7-manifold,
and we will first explain how to read off the isotopy class of the attaching
links for the 2- and 4-handles from the invariants.
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3. PRELIMINARIES

We collect in this paragraph the background material and some preliminary
results which we will use in our proof. Most of the results are by now
standard results from various parts of algebraic, differential, and piecewise
linear topology.

3.1 THE STRUCTURE OF MANIFOLDS : HANDLE ATTACHMENT AND SURGERY

Let M be an m-dimensional manifold with boundary. Suppose we are
given an embedding f: S* ! x D™"™* — OM. We then define

M =M U; (D x D"*)

and say that M’ is obtained from M by the attachment of a \-handle along f.
Moreover, f(S*~! x{0}) is called the attaching sphere, D* x {0} the core disc,
and {0} x S"~*~! the belt sphere. We will often simply write M’ = M UH".

REMARK 3.1. 1) If M is assumed to be differentiable and f to be a
differentiable embedding, handle attachment can be described in such a way
that the resulting manifold is again differentiable (see [17], VI, §§6 and 8),
i.e., no “smoothing of the corners” is required.

ii) If M is oriented, then M’ will inherit an orientation which is compatible
with the given orientation of M’ and the natural orientation of D* x D™,
if and only if f reverses the orientations.

The next operation we consider was introduced by Milnor [21] and Wallace
[38] and goes back to Thom. For this, let N be a manifold of dimension
m—1 and f: $*7! x D" — N an embedding. Denote by f the restriction
of f to S 1 x §™ A1 and set

XN, f) == (N \ int f(S*~" x D)) Us (D x §mA 1)

We say that x(N,f) is constructed from N by surgery along f. Informally
speaking, we remove from N a (A — 1)-sphere with trivial normal bundle and
replace it with an (m — A — 1)-sphere, again with trivial normal bundle.

REMARK 3.2. 1) If N is oriented, then f has to be orientation preserving
for x(V,f) to inherit a natural orientation from those of N and D> x §m—*—1,

This is because $*~! x §”~*~! inherits the reversed orientation as boundary
of N\ int f(S*~! x D),




270 _ A. SCHMITT

ii) The operations of handle attachment and surgery are closely related :
Let M be an m-dimensional manifold with boundary N := OM and
f: S x D" —5 N an embedding. Now, attach a \-handle along f
in order to obtain M’. Then oM’ = x(N,f).

We will also perform a “surgery in pairs”. For this, N is assumed to be
an (m — 1)-dimensional manifold, and K a submanifold of dimension k — 1.
Assume that, for some )\ < k, we are given an embedding f: S~ !xD""* —+ N
which induces an embedding f* := f|gr—1pi-r: S~ x D¥"* — K. Then
Xx(K,f*) is naturally contained as a submanifold in x(V,f).

The next result is a special case of the “minimal presentation theorem”
of Smale [31] and is crucial for the explicit analysis of the structure of a
manifold.

THEOREM 3.3. Let X be a closed simply connected manifold of dimension
m > 6 with torsion free homology. Then there exists a sequence of submanifolds

D"=2WoCcWiCW,C---CW, =X,

such that W; is obtained from W;_; by attaching b;(X) i-handles, i =
I,...,m.
Moreover, for any such sequence, there exists a dual sequence

WoCcW,C---CW,=X,

such that the attaching (i — 1)-spheres in W;_; coincide with the belt spheres
in Wy—;, i=1,...,m.

Proof. For differentiable manifolds, an attractive presentation of the
relevant material is contained in Chapters VII and VIII of [17]. In the piecewise
linear category, handle decompositions are discussed in [27] (cf. also [13]).
However, the statement concerning the number of handles is not explicitly
given there. Nevertheless, one verifies that the necessary tools (such as Whitney
lemma and handle sliding) are also proved in [27]. [

REMARK 3.4. 1) Retracting all A-handles to their core discs, starting with
A = 0, yields a CW-complex which is homotopy equivalent to X (cf. [27],
p. 83).

ii) Observe that, by 1), a handle decomposition as in Theorem 3.3 yields
a preferred basis for H.(X,Z). By renumbering, orientation reversal in the
attaching spheres, and handle sliding, one can obtain any basis of H,.(X,Z)
as the preferred basis of a handle decomposition ([17], (1.7), p. 148).
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iii) If X comes with an orientation, we may assume that D™ is orientation
preservingly embedded and that all attaching maps are orientation reversing.

3.2 CONSEQUENCES FOR E-MANIFOLDS OF DIMENSION EIGHT WITH w; = 0

Let X be a piecewise linear (smooth) E-manifold of dimension eight with
wy(X) = 0. The first observation concerns the structure of W,.

LEMMA 3.5. One has Wy = #5_,(S* x D°).

Proof. The manifold W, is an (8, 1)-handle body and as such homeo-
morphic to the boundary connected sum of b D®-bundles over S? ([17], §11,
p.115). As 7 (SO(4)) = Z, and we have requested wx(X) = 0, the claim
follows. [l

The next consequence 1is

The manifold Wy is determined by a framed link of by(X) three-dimensional
spheres in #2_,(S? x $°).

We shall look into the classification of such links below. The third
consequence 1s

LEMMA 3.6. i) OWs = #2_,(S* x $°).

ii) The manifold X is of the form Wy Up #2_,(S? x D®) where
fi#_ (8% x §°) — OW,

is a piecewise linear (smooth) isomorphism, such that f, maps the canonical
basis of Hy#_,(S?* x $°),Z) to the preferred basis of Hy(OW*,Z).

Proof. i) This follows because OW, = OW,. ii) follows because
X =W,UW,, and W, 2 #%_,(5*> x D®), by Lemma 3.5. [

3.3 HOMOTOPY VS. ISOTOPY

By Theorem 3.3, the manifold is determined by the ambient isotopy classes
of the attaching maps. However, the topological invariants of the manifold give
us at best their homotopy classes. It is, therefore, important to have theorems
granting that this is enough. In the setting of differentiable manifolds, we have
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THEOREM 3.7 (Haefliger [6], [7]). Let S be a closed differentiable manifold
of dimension n and M an m-dimensional differentiable manifold without
boundary. Let f: S — M be a continuous map and k > 0, such that

mi(f): mi(S) — m(M)

is an isomorphism for 0 < i < k and surjective for i = k + 1. Then the

Jfollowing is satisfied : '

1. If m>2n—k and n > 2k +2, then f is homotopic to a differentiable
embedding.

2. If m>2n—k and n > 2k + 2, then two differentiable embeddings of S
into M which are homotopic are also ambient isotopic.

In the setting of piecewise linear manifolds, similar results hold true. We
refer to Haefliger’s survey article [9]. For our purposes, the result stated below
will be sufficient.

THEOREM 3.8. Suppose S is a closed n-dimensional manifold, M an
m-dimensional manifold without boundary, and f S — M a continuous
map. Assume one has

e m—n>3;
e S is 2n—m+ 1)-connected,
o M s (2n'~ m + 2)-connected.
Then :
(1) f is homotopic to an embedding;

(2) two embeddings which are homotopic to f are ambient isotopic.

Proof- The theorem of Irwin ([27], Thm. 7.12 and Ex. 7.14, [13], Thm. 8.1)
yields (1) and that f; and f, as in (2) are concordant. But, since m —n > 3,
concordance implies ambient isotopy ([13], Chap. IX). [J

COROLLARY 3.9. Let S:= S and M a simply connected differentiable
or piecewise linear manifold of dimension 7 without boundary. Then m3(M)
classifies differentiable and piecewise linear embeddings, respectively, of S°
into M up to ambient isotopy.

COROLLARY 3.10 (Zeeman’s unknotting theorem [39]). For every m,n
with m —n > 3, any piecewise linear embedding of S" into S™ is isotopic to
the standard embedding.
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3.4 SOME 4-DIMENSIONAL CW-COMPLEXES

By Remark 3.4, a handle decomposition of X gives us a CW-complex
which is homotopy equivalent to X. The following discussion will enable us
to understand the 4-skeleton of that complex. ‘

Let W :=S%2V---VvS? be the b-fold wedge product of 2-spheres. Suppose
X is the CW-complex obtained by attaching a 4-cell to W via the map
g € m3(W). The Hilton-Milnor theorem ([30], Thm. 7.9.4) asserts that

b
(W) =P mSHe @ w(S).
i=1 1<i<j<b

Choosing the standard generators for 73(S?) and m3(S°), we can describe g
by a tuple (l,i = 1,...,b;l;,1 < i < j < b) of integers. These integers
determine the cohomology ring of X = W U, D* as follows:

PROPOSITION 3.11. Let y € H*(X,Z) be the generator of H*(X,Z) given
by the attached 4-cell and xi,...,x, the canonical basis of H*(X,Z) =
H*(W.,Z). Then

X,‘U)Cj:lij°y, 1Sl<]§b,
inxi:li-y, l:1,,b

This is proved like [22], (1.5), p. 103. We recall the proof in the following
example.

EXAMPLE 3.12. We treat the case b = 2. Consider the embedding
1087V 8t s 82 x §7 s CP™ x CP*™ .
The standard basis for H*(CP*>® x CP>®,Z) = Z93 is given by the elements

Y1, Y2, y3 obtained from attaching D* via (1,0;0), (0,0;1), and (0,1;0),
respectively. Let h: D* — D* VvV D* vV D* be the canonical map followed by

(ﬁ-xr——H?-mll(x)) \/(19-x*—>19~m112(x)) V (19-Xf——>19-m12(x)).

Here, m; stands for a representative of [k - idg] € m3(S?) and
D* = {19-x | x € $3.9 € [0,1]}. Now, h and ¢ glue to a map
f: X — CP*® x CP*, and

f*: HY(CP* x CP*®,Z) —s H*X,Z)
aiy1 + ays + asys — (arly + axlyy + ash)y,

so that the assertion follows from the naturality of the cup-product.
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3.5 PONTRJAGIN CLASSES AND m3(SO(4))

Vector bundles of rank 4 over $* are classified by elements in m3(SO(4)).
In our setting, such vector bundles will appear as normal bundles. We recall,
therefore, the description of that group and relate it to Pontrjagin classes and
self intersection numbers.

First, look at the natural map w3(SO(4)) — w3 (SO(4) / SO(3)) = m3(S?).
This map has a splitting ([32], §22.6) which induces an isomorphism

m3(SO(4)) = m3(SO(3)) ® T3(S°).

Let a3 be the generator for m3(SO(3)) = Z from [32], §22.3, and (5 :=
[idg] € m3(S?), so that we obtain the isomorphism Z & Z — m(SO4)),
(k1, kp) — kyaz + k03 . Finally, the kernel of the map m3(SO(4)) — m3(SO)
to the stable homotopy group is generated by —a3+2085 ([32], §23.6), whence
[23], (20.9), implies

PROPOSITION 3.13. Let E be the vector bundle over S* defined by the
element kios + ko83 € m3(SO4)). Then

p1(E) = £(2ki + 4k,) .

COROLLARY 3.14. Let f: 8* — M be a differentiable embedding of
S* into the differentiable 8-manifold M. Let E := f*Ty/Tss be the normal
bundle. Then the self intersection number s of f(S*) in M satisfies

2s = pi(E) mod 4.

Proof. If E is given by the element kjas+ky03 € m3(SO(4)), then s = k;
([171, (5.4), p.72). Since pi(E) = £(2k, + 4k;), the claim follows. L]

3.6 LINKS OF 3-SPHERES IN #7_ (5% x §°)

If X is a closed E-manifold of dimension 8 with w(X) = 0, then
W, = #2_,(5? x D%), b = by(X), by Lemma 3.5. Thus, W, is determined by
a framed link of 3-spheres in W, = #2_,(S? x $°). Therefore, we will now
classify such links.

So, let W := #2_,(S? x $°) be a b-fold connected sum. We can choose
b disjoint 2-spheres S?, i=1,...,b, embedded in W and representing the
natural basis of Hy(W,Z). One checks that the homotopy type of W is given
up to dimension 4 by the b-fold wedge product S?V---V S2. Suppose we are
given a link of 4’ three-dimensional spheres, i.e., we are given b’ differentiable
embeddings g;: > — W, i=1,...,b', with g(5?) N gi(S®) = @ for i #j.
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By the transversality theorem ([17], IV.(2.4)), one sees that we may assume
S? N gi($?) = @ for all i and j.

By Corollary 3.9, the ambient isotopy class of the embedding gk 1S
determined by the element ¢ = [gi] € m3(Wy), Wi = W\Uj?ék gj(S3),
k=1,...,b'. We clearly have (compare [8]) ‘

(W) = m3($2V - VSV S V.-V S

]
~\~

bx b’ —=1)x

so that the Hilton-Milnor theorem yields
b

W) =P mSH e P 7S o Pms(s).

i=1 1<i<j<b j#k

Hence, we write ¢y as a tuple of integers:

oe= (I i=1,...,b; K 1<i<j<b; M\, j#k).

ijs
Observe that, for j # k, @i is mapped under the natural homomorphism
w3(We) — Hy(Wi, Z) — H3 (W \ g(5),Z) (= Z)

to the image of the fundamental class of $* under gj.. Thus, ) is just the
‘usual’ linking number of the spheres g;(S?) and g;(S®) in W (compare [8]).

3.7 LINKS OF 5-SPHERES IN S%

Let ]—"CEL(COO) be as before, and let CZI;L(COO) be the group of isotopy classes
of piecewise linear (smooth) embeddings of b disjoint copies of S5 into S®.
For b =1, these groups are studied in [10], [19], and [20]. A brief summary
with references of results in the case b > 1 is contained in Section 2.6 of
[11]. We will review some of this material below.

PROPOSITION 3.15. We have FCS~ = FCP“~17,.

Proof. Since ms(SO(3)) = Z,, the standard embedding of S° into S®
with its two possible framings provides an injection of Z, into fCll)L(COO). By
Zeeman’s unknotting theorem 3.10, the map Z;, — FC.~ is an isomorphism.
As remarked in Section 2.6 of [11], FC - is isomorphic to F1J, the group
of h-cobordism classes of framed submanifolds of $® which are homotopy
5-spheres. Moreover, by [10] and [19], there is an exact sequence

o 9 — FCYT s FY— 9 — -

As the groups ¥ and 9¥° of exotic 5- and 6-spheres are trivial [17], our
claim is settled. [
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Let L, C cg°° be the subgroup of those embeddings for which the
restriction to each component is isotopic to the standard embedding. As
observed in Section 2.6 of [11], Zeeman’s unknotting theorem 3.10 implies
that L, = CF*. The following result settles Proposition 2.3 :

o b
COROLLARY 3.16. FC{ = FClr=L,ePZ,.

i=1

For the group L, Theorem 1.3 of [11] provides a fairly explicit description
as an extension of abelian groups. For this, consider the b-fold wedge product
\/o_, S of 2-spheres together with its inclusion i: \/%_, §% < X5_, 2 into the
b-fold product of 2-spheres. Finally, let p;: \/%_, $2 —s S2 be the projection
onto the i factor, i=1,...,b. Set, for m=1,2,...,

b
Zii — Ker(wm(pj): wm(\/ Sz) — 7rm(Sz))J j=1,...,b,

i=1

b
Ay = DAY,
j=1
and

1

b
7= Ker(mu(i): mu(\/ %) —

i=1

b
Tm(S?)) ,
=1
and define
wi: Af — Tt

on Ay; by wy(e) := [e,]. Here, [.,.] stands for the Whitehead product
inside the homotopy groups of \/%_,$? and 4: $% — \/2_|8% for the
inclusion of the i® factor, i = 1,... ,b. Theorem 1.3 of [11] yields in
our situation

THEOREM 3.17. There is an exact sequence of abelian groups

0 — Coker(w$) — L, — Ker(w;) — 0.

We remark that the formulas of Steer [33] might be used for the
explicit computation of Whitehead products and thus for the determination
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of Coker(w$) and Ker(w3;). The free part of L;, e.g., can be obtained quite
easily. We confine ourselves to prove the following important fact.

COROLLARY 3.18. The group L, has positive rank for b > 2.

Proof. Let L, := P> Lss be the free graded Lie algebra with
Ly1 = @?:1Z'€i- For I = 2,3,..., let ell,...,eﬁll be a basis for
Ly, consisting of iterated commutators of the e;. By assigning ¢ to
e;, every iterated commutator ¢ € L;; in the e; defines an element

ale) € myi (Vo $%).

To settle our claim, it is certainly sufficient to show that Coker(wg) has
positive rank. Now, by the Hilton-Milnor theorem

7 di—1
1] =2 P Pmish - alel ™).
1=3k=1

Note that m7(S’) is finite for [ ¢ {4,7} (see [32] and [35] for the explicit
description of those groups). The Hopf fibration S7 — S$* [32], on the other
hand, yields a decomposition 77(S%) = 76(S>) @ m7(S7) = Z1, ®Z. Therefore, it
will suffice to show that the free part of AS is mapped to EBJ‘-jil 77(87) - ou(ef).
For j=1,...,b, we have

6 di—1

Ay 2@ m6(S?) 1 ® DD (S - el

The group me(S’) is finite for I < 6, and we obviously have [ade}), 1] =
a([ey, e;]). If we expand the commutator [ei,ej] in the basis e?, . ,egé, we
find an expansion for [a(e,?), tj] in terms of the oz(e,?). L]

COROLLARY 3.19. The set of GLy(Z)-equivalence classes of elements in
Ly is infinite for b > 2.

Proof. We have seen that the GL,(Z)-set Ly3 is contained in the
GLy(Z)-set L. The GL,(Z)-action on L, 5 originates from a homomorphism
GLy(Z) — GL(Lp3) := Autz(Ly3). In particular, any matrix g € GL,(Z)
preserves the absolute value of the determinant of any d; elements in Lys.
This implies, for instance, that a - e and b - e} cannot lie in the same
GLy(Z)-orbit, if 0 <a <b. []
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4. PROOF OF THEOREM 2.2 AND THEOREM 2.4

From now on, X stands for an eight-dimensional E-manifold with
’LUQ(X) = 0.

4.1 PROOF OF THEOREM 2.2

The classification result for 3-connected E-manifolds of dimension eight
1S a special case of a result of Wall’s [36] and can be easily obtained with
the methods described in [17], VII, §12. Let us recall the details, because we
will need them later on.

We fix a basis b for H4(X,Z) and let y be the dual basis of H*(X,Z).
Then there is a handle presentation X = DS UH? U ---UHj, UD® with b
as the preferred basis. The manifold T := D} UH{ U ---UH}, is determined
by the ambient isotopy class of a framed link of 3-spheres in S’, having
b’ components. Let us first look at such a link, forgetting the framing, i.e.,
suppose we are given embeddings g;: $° — §7 with §;NS; = @ for
i#£j, Si=g(S?, i=1,...,b0. By 3.9, we may assume that the g; are
differentiable. Observe that the normal bundles of the S; are trivial.

We equip §; with the orientation induced via g; by the standard orientation
of S® and the normal bundle of S; with the orientation which is determined
by requiring that the orientation of §; followed by that of its normal bundle
coincide with the orientation of S7. Therefore, a 3-sphere F; which bounds
the fibre of a tubular neighborhood of §; in S7 inherits an orientation and
thus provides a generator ¢; for H3(S"\ S;,Z) = Z, i=1,...,b' . For i #,
the image of the fundamental class [S;] in H3 (S’ \Sj, Z) is of the form A;-e;.
The integer A; is called the linking number of S; and S;.

For i =1,...,b', the manifold S7\U]. +;Sj 1s up to dimension 5 homotopy
equivalent to \/,, F;, and

m(\S) 2m(\/F) 2@ H;(S7\S;,Z).
j#i j#i L

Under this identification, we have [g;] = Zj#l. Aij - ¢;. The [g;] determine the
ambient isotopy class of the given link (3.9), and we deduce

PROPOSITION 4.1. The linking numbers X\;j, 1 < i < j < b, determine
the given link up to ambient isotopy.

The sphere S; bounds a 4-dimensional disc D in D%, i = 1,...,V/,
which we equip with the induced orientation. We may, furthermore, assume




CLASSIFICATION OF MANIFOLDS IN DIMENSION 8 279

that the D; intersect transversely in the interior of D8. Then the Ajj coincide
with the intersection numbers D; .D;", 1 < i< j<Pb. For an intuitive
proof (in dimension 4), see [28], p.67. Now, every disc D; is completed
by the core disc Dl-+ of the i™ 4-handle to an embedded 4-sphere X; in
T,i=1,...,b, and, since all the core discs are pairwise disjbint, the A;
coincide with the intersection numbers 2;.2;, 1 <i <j < b'. Finally, X is
obtained by gluing an 8-disc to T along 0T, and the spheres X; represent
the elements of the chosen basis b of Hy(X,Z). Identifying the intersection
ring with the cohomology ring of X via Poincaré-duality, we see

COROLLARY 4.2. The linking numbers \; coincide with the cup products
iUy)IX], 1 <i<j<Vb, ie, the link of the attaching spheres is determined
up to ambient isotopy by the basis b and the cup products.

As we have remarked before, the normal bundles of the S; are trivial,
whence there exist embeddings f’: $° x D* — §7 with fO[ssx0y = gis
i =1,...,b'. From the uniqueness of tubular (in differential topology) or
regular (in piecewise linear topology) neighbourhoods, every other embedding
fi: 8 x D* — §7 with fi|s:x 0y = g; is ambient isotopic to one of the form
S = (G, y) — (k- ), [hi] € m3(SO@)), i=1,...,b". Corollary 3.14
implies that we can choose the fio, i =1,...,b', in such a way that the
following holds:

LEMMA 4.3. Suppose T is obtained by attaching 4-handles along fl*!
with [h] = kios +KBs, i=1,...,b, then

%% =ky and pi(Trs,) = £(2k + 4k}) .

This shows that also the framed link used for constructing 7 and X
is determined by the system of invariants associated to (X, y), proving the

injectivity in Part i) of the theorem. Moreover, the assertion about the fibres
in Part 1i) is clear.

Conversely, given a system Z of invariants in Z(0, '), satisfying relation
(2), there exists a based 3-connected manifold (X, y) realizing Z. Indeed,
by the above identification of the invariants, Z determines a framed link
in §7 and thus the manifold 7 := D® UH} U --- U H%. The boundary of
T is a 7-dimensional homotopy sphere ([17], (12.2), p.119) and, therefore,
piecewise linearly homeomorphic to S7. Hence, X = T Ug D8 is a piecewise
linear manifold with the desired system of invariants, settling Part i). If, in
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addition, relation (3) holds, then [18] ensures that X will carry a smooth
structure (compare Theorem A.4 of [24]), finishing the proof of Part ii). [

4.2 'THE DETERMINATION OF W, IN THE GENERAL CASE

We have a handle decomposition Wy C W, € Wy C Wg C X of X
providing preferred bases b of H,(X,Z) and ¢ of H4(X,Z), respectively. Let
x and y be the dual bases of H*(X,7Z) and H*(X,Z), respectively. Finally,
let y* be the basis of H*(X,Z) which is dual to y via ~x.

We find oW, = #f’zl(S2 x $3), and W, is determined by the ambient
isotopy class of a framed link of 3-spheres in W, with b’ components. Let
fi: 8 x D* — W, be the k™ component of that link and gi := fi|sx {0} »
k=1,...,0 . In the notation of Section 3.6, we write [gi] € W3(8W2\Uk¢j S;)
in the form (ff,i=1,...,b,l5,1 <i<j<bAgj#k, k=1,...,0. To
see the significance of the I¥ and lg-, note that, by Remark 3.4, W, UH} C X
is homotopy equivalent to (\/f?:1 $?) Ug, D*. The cohomology ring of that
complex has been computed in Proposition 3.11, so that the naturality of the
cup product implies the following formulae for the cup products in X :

bl
_ k * . .
inxj—E lij'yk7 [ #],
k=1
bl
k % .
inxi:E Eoye, i=1,...,b.
k=1

Therefore, the lﬁ-‘ and lg- are determined by ox and ~x (used to compute y*),
in fact lf = ’Yx((S(xi ® x,-) Y yk) and lg = ’Yx(d(xi & xj) 0% yk).

To determine the A; and the framings, we proceed as follows: Look
at the embedding #2_,(S* x $°) < X. There exist b embedded 2-spheres
S2,...,S% which represent the basis b and which do not meet the given link.
Finally, #2_,(S? x $°) obviously possesses a regular neighborhood in X which
is homeomorphic to #2_ (5% x $°) x D!. Thus, we can perform “surgery in
pairs” as described in Section 3.1. The result is a 3-connected manifold X*
containing S’ . It is by construction the manifold obtained from the framed link
in 7 derived from the given one in #2_ (5% x §%) (cf. Section 4.1). We will be
finished, once we are able to compare the invariants of X to those of X*. To
do so, we look at the trace of the surgery, i.e., at Y = (X x )UH; U---UHj3,,
the 5-handles being attached along tubular neighborhoods of the S; x {1} in
X x{1}. Then Oy =X U X .
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The Mayer-Vietoris sequence provides the isomorphisms

b/
Huy(X,Z) = Hy(X \ | [(Si x D), Z) = Hy(X", Z).

i=1

Set H := Hy(X \ 2, (S: x D), Z) . By Lefschetz duality (5], (28.18)), there
is for each g € N a diagram (omitting Z-coefficients)

H YY) — H?Y9Y) — HYY,0Y) —  HI(Y)

4) |= lg’ lg lg

Hlo_q(Y, aY) — Hg_q(aY) — Hg_q(Y) — Hg_q(Y,aY)

where the left square commutes up to the sign (—1)7~! and the other two
commute. We first use it in the case ¢ = 5. Look at the commutative diagram

H —= H,X*,Z)

-

H4(X> Z) — H4(Y7 Z) )

in which all arrows are injective, because Hs(Y,X;Z) =0 = Hs(Y,X*;Z) (cf.
[17], p. 198). Using the identification H4(0Y,Z) = H & H, we find

5) Im(Hs(Y,0Y;Z)) = { 0, —y) e HOH } .

Similar considerations apply to the case ¢ = 9. Taking into account that X*
sits in Y with the reversed orientation, (4) shows that the forms ~yx and ~yx«,
both defined with respect to the preferred bases, coincide. In the same manner,
the pullbacks of p;(Y) to H*(X,Z) and H*(X* Z), respectively, agree. Since
X and X* are the boundary components of Y, these pullbacks are p;(X) and.
p1(X™), respectively, and we are done. [

4.3 MANIFOLDS WITH GIVEN INVARIANTS

One might speculate, especially in view of the classification of E-manifolds
in dimension 4 and 6, that the invariants Jx, vx, and p;(X) might suf-
fice to classify E-manifolds with w,(X) = O in dimension 8. However,
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Lemma 3.6 shows that these invariants determine only W, and we still
have the choice of an isomorphism in gluing #2_,(S* x $°) to Wy, and
different gluings may lead to different results. The following example,
which was communicated to me by J.-C. Hausmann, illustrates this phe-
nomenon.

EXAMPLE 4.4. One has w5(SO3)) = Z, [32]. Therefore, there are two
different S2-bundles over S°, call them X := S° x $? and X' := S® X S2.
Obviously, X and X’ are spin-manifolds with trivial invariants, but one
computes 7s5(X) = Z, and 75(X’) = {0}.

Fix b, b’, and a system Z of invariants in the image of the map
ZPLC) (b, b'). As we have seen, Z determines a certain manifold W,
whose boundary is diffeomorphic to #2_,(S? x $°) together with a basis
b for H,(OW4,Z). Let b, be the natural basis for H,(#%_,(S?> x $°),7Z),
and denote by IsoOL(C ) the set of piecewise linear (smooth) isomorphisms
f:#(S? x $5) — W, with fi(by) = b. Our results show that every
based piecewise linear (smooth) manifold (X,x,y) with system of invari-
ants Z 1is piecewise linearly (smoothly) isomorp_hic to a manifold of the
form

X(f) == OW4 Uy #l (8% x §°) for some f € IsoPL(Coo)

with its given bases for H*(X(f),Z) and H*(X(f),Z). Conversely, every mani-
fold of the form X(f) is a piecewise linear (smooth) based E-manifold with
invariants Z.

Now, suppose we are given f,f" € IsoPL(c ), such that X(f) and X(f')
are isomorphic as piecewise linear (smooth) based manifolds. We claim that
we can find an isomorphism ¢: X(f) — X(f') with o(Wy) = W,. For
this, look at the handle decomposition Wy C W, C W,. Since W;, is
just an embedded 8-disc in X(f) and X(f’), respectively, we can choose
o with (W) = Wy. Let [ C 0Wp be the framed link for attaching
the 2-handles. Then ¢(/) and [ are isotopic. Therefore, we can find a
level preserving diffeomorphi~sm QZ c[—1,1] x OWy — [—1,1] x OW, with
V|gx1yxow, = idow, and ¥|ro1xow,(p(D)) = [. If we choose a tubular
neighborhood (&2 [—1,1] x OW,y) of OW, in X(f'), we can use zz to
define an automorphism ¢ : X(f') — X(’) with ¥(p()) = [. Thus,
Yo maps W, onto W,. A similar argument shows that we can achieve
e(Wy) = Wy.
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Let Autt"C 7@ (2 x D%) be the group of piecewise linear (smooth)
automorphisms g of #2_,(S? x D®) with H*(g,Z) = id and similarly define
AutgL(Coo)(W4). Then we have just established

PROPOSITION 4.5. The set of isomorphy classes of based piecewise linear
(smooth) E-manifolds with invariants Z is in bijection to the set of equivalence
classes in IsogL(C ) with respect to the equivalence relation coming from the

group action

AR CI W) x AuHETI @ (82 x D)) x Tsog-© ) — Tsop €

(h,9,F) — Hlow, o f 0 gl (o5,

We shall see in Lemma 5.1 that Autg“(#_,(S*> x D®)) contains the
commutator subgroup of Autf“(#2_,(S? x $°)).

COROLLARY 4.6. The set of isomorphy classes of based piecewise linear
E-manifolds with b, = b and by = 0 is in bijection to the abelian group

AutfE#_ (82 x §%))/ Autg=(#2_,(S* x D%)).

I have been informed by experts that the structure of the groups
AuttH I @ (8% x $%)) and Auth"C€T@#_ (S2 x D) has not yet been
determined and that this would be a rather difficult task. Therefore, we
choose the viewpoint of framed links in order to finish our considerations.

In Theorem 5.2, we will then use this viewpoint to compute the group
AutgE(#_ (S x §%))/ Auth(#2_,(S? x D%)).

As above, let (X, x,y) be a based piecewise linear (smooth) E-manifold with
zero second Stiefel-Whitney class and system of invariants Zix xy) = (0,7,D).
We have seen that we can find a framed link Iy of 2—sphere—s_in X which
represents the basis x and perform surgery along this link in order to get a
3-connected piecewise linear (smooth) based manifold (X*,y) together with a
framed link 73, of 5-spheres init. If (X', x',y,Ix/) is another such object where
(X', x',y") is isomorphic to (X,x,y), then cl_early we can find an isomorphism
p: (X,x,y) — X',x',y") with @(Ix) = Ix/. Such an isomorphism ¢ yields,
after surgery, an isomorphism ¢*: (X*,y) — (X"*,y") with ¢*(l},) = I§.. In
particular, the manifold (X*,y) is determined up to piecewise linear (smooth)

isomorphy. We call it the fype of (X ,X,y). Note that this notion matters only
in the smooth case, by Theorem 2.2.
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To summarize, we have

PROPOSITION 4.7. The set of isomorphy classes of based piecewise linear
(smooth) E-manifolds of type (X*,y) is in bijection to the set of equivalence
classes of framed links of 5—Sph€l’€g in X* where two such links | and ' are
considered equivalent, if there is a piecewise linear (smooth) automorphism
e (X", y) — (X7, y) with o*() =1,

EXAMPLE 4.8. The group Zgab acts freely on the set of isotopy classes of
framed links of b spheres of dimension 5 in X* by altering the framings of
the components. Note that the two possible framings of the trivial bundle on a
5-sphere are distinguished by the fact that one extends over D° and the other
does not. This property is preserved under piecewise linear homeomorphisms,
so that we conclude that Zgab acts also freely on the set of equivalence classes
of framed links of b spheres of dimension 5 in X*.

Note that this completes the classification of Spin-E-manifolds of dimension
eight with second Betti number one.

Let us look at manifolds of type S®. We claim that two framed links /
and I’ of 5-spheres are equivalent in the above sense, if and only if they are
isotopic. Clearly, after replacing [ and /' by isotopic links, we may assume
that both of them are contained in the Southern hemisphere and that ©* is
the identity on the Northern hemisphere. Now, choose a representative ¢! for
the 1sotopy class of ©*~! which is the identity on the Southern hemisphere.
Then ! o * is isotopic to.the identity and carries [ into /.

For differentiable manifolds, the operation X —— X#X, X an exotic
8-sphere, establishes a bijection between the set of isomorphy classes of
based smooth E-manifolds of type S® and the set of isomorphy classes of
based smooth E-manifolds of type X. We conclude

COROLLARY 4.9. 1) The set of isomorphy classes of based piecewise
linear E- mamfolds with by = b and by = 0 is in bz]ectwn to the group
FLb Lb@®l 1Z2 Vet o o

i1) The set of isomorphy classes of based smooth E-manifolds with by = b
and by, = 0 is in bijection to the group 9% @ FL,;.

Finally, we have to deal with those manifolds for which the cup form ¢
is trivial. Our investigations in Sections 3.6 and 4.2 show that the framed
link of 3-spheres in OW, can be chosen to be contained in a small disc.
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In other words, a manifold X with dx = 0 is piecewise linearly (smoothly)
isomorphic XT#X* where X* is the type of X and bs(XT) = 0. As our surgery
arguments above reveal, an isomorphism between XT#x* and X'T#X'* can
be chosen of the form of#o* where of: XT — X'T and o*: X* — X
are isomorphisms. Therefore, the set of isomorphy classes of based piecewise
linear E-manifolds of type X* with b, = b is in bijection to the set of
isomorphy classes of based piecewise linear E-manifolds with b, = b and
bs = 0. The same goes for differentiable manifolds of type X*, if X* is not
diffeomorphic to X*#X, ¥ an exotic 8-sphere. Otherwise, we have to divide
by the action of ¥®. This observation together with Corollary 4.9 settles
Theorem 2.4. [

5. STRUCTURE OF THE GROUP Autg"(#2_,(S? x §°))/ Autg" (#2_,(S* x D%))

In this section we prove that Autg~(#2_,(S? x $%))/ Autg~ (#2_,(S? x D%))
1s an abelian group which is, moreover, isomorphic to the group FL, defined
before. This result should be of some independent interest, especially because
the group FL, is quite well understood by Haefliger’s work. For b = 1, we
refer to [20] for more specific information.

We begin with the elementary

LEMMA 5.1. Let k € Autl(;L(#ﬁ’zl(S2 X SS)) be a commutator. Then k
extends to an automorphism of #5_,(S* x D®).

Proof. For the proof, we depict #7_,(S* x $°) as follows: Let V;,
i=1,...,b, be b copies of $? x D°, and we join V; and Viy; by a tube
T; =2 [-1,1]1xD’, i=1,...,b—1. The result is a manifold W whose boundary
is isomorphic to #2_,(5* x S°). We make the following normalizations: Write
OV; as ($* x D')U(S* x D), let n; and s; be the centers of D' and
D', respectively, and set S, = S? xn; and S =82 x5, i=1,...,b.
Choose furthermore points e; # w; in ($* x D',)N(S? x D), i=1,...,b,
and suppose that {—1} x D’ C T; is attached to a disc around w; in 9V,
and {1} x D" C T; to a disc around e;;; in OViyy, i=1,....b— 1. Set
T =2 T;.

Now, let k = fogof~og™ with f,g € Au"(#2_,(S> x §%). As
Hj(h,Z) is the identity for every element & € Auty™(#2_,(S? x §%)) and S, ,
i=1,...,b, both represent the same basis for H,(OW,Z), h is 1sotopic to a
map A’ which satisfies either assumption (A) or (B) below.
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(A): M is trivial on a tubular neighborhood of SfF which contains
(S? foF)\Int(T), i=1,...,b.

(B): K is trivial on a tubular neighborhood of S which contains
(2 x D)\ Int(T), i=1,...,b.

Next, replace f by an isotopic map f’ satisfying (A), and g by an isotopic
map ¢ satisfying (B). Then k' is isotopic to f' o g’ of' ‘o g ™. The
map k' is the identity outside Int(dT). It is, furthermore, the identity on a
collar of ({—1}U{1}) x % in R, :==[-1,11xS® C OT;, i=1,...,b—1.
Let k! be the restriction of k' to R;, i = 1,...,b. We know that each
k. is the identity on a collar of {—1,1} x S° in R;. Thus, we extend
every k! to a PL automorphism k; of D7 x {—1}UR; UD7 x {1} = &
through idp7y {—13up7x 13- Now, by [27], Lemma 1.10, p.8, k; extends to
an automorphism x; of D® = D7 x [-1,1], i = 1,...,b. Thus, the maps
idy, and «;, i =1,...,b, glue to an automorphism of #2_,(S> x D®) whose
restriction to the boundary is just k.  []

This lemma shows that Auty"(#2_,(S?> x D)) is a normal subgroup of
Autg" (#2(S* x %), and that Autg"(#2_,(S? x $°))/ Autg™ (#7_,(S? x D%))
is abelian. Moreover, in Section 4.3, we have already defined a set theoretic
bijection

B: Autg” (#2_,(S* x §°))/ Autg" (#2_,(S* x D%)) — FL, .

THEOREM 5.2. The map [ is a group isomorphism.

Proof. Since [ is bijective, we have to verify that 3 is a homomorphism.
In order to do so, we will construct a group G together with surjective
homomorphisms

x1: G — Autg" (#2_,(5* x §%)) / Autg" (#_,(S* x D))

and
X2: G — FLb 3

such that y, = o x;. This will clearly settle the claim.

Before we define G, we recall some constructions and conventions from
[11]. Let $® = {(x0,..-,%) € R’ | x5+ -+ +x3 = 1} be the unit
sphere, write $® = D% UD®, and let o: $® — $° be the reflection at
S7 = D% N D%, interchanging the Northern and the Southern hemispheres.
First, let Sj, := (S3,...,53) be a ‘standard link’ in S® defined as follows: Fix
real numbers —1/2 < a; < --- < ap < 1/2, and set
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S? — {(xo,...,xg) e S8 | X6 =x7 =x3 =0, X9:ai}.
We choose, furthermore, framings 7;: S? x D> — S® which extend over Db,
such that 7(D; . x D*) C D} and oo = 70 (olg X idps), i =1,...,b.

Let [ be the resulting framed link in S% with ) . := ) N D% . Recall from

Section 1 of [11] that

1. Every framed link [ of b five-dimensional spheres in S8 is isotopic to a
link 7, such that either (A)  ND% =1) _ or B) I'ND% =1 .

2. If [; satisfies (A) and [, satisfies (B), then [y + [, is represented by the
link [ with I[ND% =L ND3 and IND% =1 NnDE .

Note that, if we perform surgery along 2, we get a manifold W = W, U W_

which is isomorphic to #2_,(S* x $°), and

b
Wy = (DL \Int () U (|_|S? x D))
i=1

is canonically isomorphic to #2_,(S? x D). For the rest of the proof, we will
use the description of #7_ (S% x $°) as W, = OW_. Set

G := {PL-maps f: S \ Int(1)) — S” \ Int()): flvoundary = id } .
For every f € G, we define op(f): #2_,(S* x$°) — #2_,(S* x $°), by extending
f through the identity on | |”_,(S? x D). Similarly, define v(f): §7 — 5.
Obviously,
x1: G — Auty~(#_,(5* x $7))/ Autg~ (#2_,(S* x D)

[ o]

1S a surjective homomorphism.

Next, we associate to f € G an element x,(f) € FL, as follows: First, we
define (f) := D% Uy D and the link I'(f) := I) , Uy _ . Then we choose
a piecewise linear homeomorphism F: X(f) — §% and set Ip(f) := F(! ()).
We have checked before that the isotopy class of [z(f) does not depend on the
chosen homeomorphism, so that x»(f) := [Ig(f)] € FL, is well defined. To see
that x,: G — FL; is a homomorphism, let f,f’ be in G. Choose extensions
¢: D% — D% and W' D8 — D8 of (f) and P(f'), respectively. We then
define F: X(f) — S® as ¢ on DY and as the identity on D% , F': S(f) —» S8
as the identity on D% and @)~ on D%, and F": 3(f’ of) — 8% as ¥
on D% and (¥)~! on D3 . Then the link Ir(f) satisfies (B), the link g (f')
satisfies (A), and (2) above shows that [lp(f' o f)] = [Ip(f")] + [Ip(F)].

Finally, for given f € G, we can perform surgery on X(f) along I(f).
The result 1s W Uy, W-. Reading this backwards means nothing else but
Bx1(f)) = x2(f) and we are done. []
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