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AN HOMOLOGY 4-SPHERE GROUP WITH NEGATIVE DEFICIENCY

by Jonathan A. HILLMAN

ABSTRACT. We give an example to show that homology 4-sphere groups need
not have deficiency 0.

The deficiency def(G) of a finitely presentable group G is the maximum
over all finite presentations P for G of the differences g —r, where g is the
number of generators and r is the number of relations in the presentation. It
is well-known that def(G) may be bounded above by homological invariants
[Ep61]. In high dimensions, whether a finitely presentable group can be
realized as the fundamental group of an n-manifold with prescribed homology
depends only on the homology of the group; in low dimensions (n < 4) such
conditions remain necessary, while constraints on the deficiency often suffice.
However bridging the gap between homologically necessary conditions and
combinatorially sufficient conditions is usually a delicate matter. This note
considers one such situation.

A group G is perfect if it is equal to its commutator subgroup G, i.e., if
the abelianization G/G’ = H,(G;Z) is trivial. If G is the fundamental group
of an homology n-sphere then it is finitely presentable and superperfect, i.e.,
H(G;Z) = Hy(G;Z) = 0. These conditions characterize homology n-sphere
groups for n > 5 [Ke69], but in low dimensions more stringent conditions
hold. Every perfect group with a presentation of deficiency 0 is an homology
4-sphere group (and therefore is superperfect) [Ke69], but there are finite
superperfect groups which are not homology 4-sphere groups [HW85]. As
any closed 3-manifold has a handlebody structure with one 0-handle and equal
numbers of 1- and 2-handles, homology 3-sphere groups have deficiency 0.
However although the finite groups SL(2,F,) are perfect and have deficiency
0 for each prime p > 5 [CR80] the binary icosahedral group I* = SL(2, Fs)
is the only finite homology 3-sphere group.
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We shall give an example of an homology 4-sphere whose group has
deficiency < 0. Thus none of the implications “G is an homology 3-sphere
group” = “G is finitely presentable, perfect and def(G) =0" = “G is an
homology 4-sphere group” = “G is finitely presentable and superperfect”
can be reversed.

A similar outcome was known for knots by the late 1970s. (Namely, none
of the implications “G is a 1-knot group” = “G is a high dimensional knot
group and def(G) =17 = “G is a 2-knot group” = “G is a high dimensional
knot group” can be reversed [Fo62, Ke65, Fa75]). The issue considered here
was raised by Plotnick, who suggested a possible example [P182]. (See also
[Be02]). We use a related construction, but our example is different, and we
do not know whether Plotnick’s candidates indeed have negative deficiency.

The construction starts with a 2-knot K: S* — S$* and an homology
4-sphere X. Let M be the closed 4-manifold obtained by surgery on K, and
let N=M{E. Let G =m(M) and H = 71(X). (Thus G is the group of the
knot K.) Let ¢t € G represent a generator of G/G' = Z, and let h € H. The
conjugacy class of th™! € m(N) = G+ H is represented by an unique isotopy
class of embeddings of S' in N. Surgery on such an embedding gives an
homology 4-sphere P, with group 7 = m(P) = (G * H)/{{th™1)).

Let p = ((G')). be the normal closure of the image of G’ in m. Then
w/p =2 H, and so 7 is the semidirect product p x H. Let I' = Z[H] and
let I = Ker(e: I' — Z) be the augmentation ideal of H. Since H is finitely
presentable [ has a resolution C, by free left I'-modules which are finitely
generated in degrees < 2. Let B = Hy(m;I) = p/p’. Then B is a left
I'-module and there is an exact sequence 0 - B — A — I — 0, in which
A = Hy(m, 1;T) is a relative homology group [Cr61]. Evaluating the Jacobian
matrix associated to a presentation for 7 via the natural epimorphism from
Z[r] to I' gives a presentation matrix for A as a module (see [Cr61] or
[Fo62]). Thus there is an exact sequence D, : --- = I" = I" - A — 0,
where n—m = def(7). A mapping cone construction leads to an exact sequence
of the form C, & Dy — Cy & Dy — B® Cy — 0 and hence to a presentation
for B of the form C, & D & Cy — C; & Dy — B.

Now let K be the 2-twist spin of the trefoil knot, with group
G={x,s|x*=1,sxs7'=x"'), and let H be the Higman group with pre-
sentation (a,b,c,d | bab™! = a*, cbc™! = b* dcd™! = ¢*, ada™! = &?).
Then H is perfect and def(H) = 0, so there is an homology 4-sphere X%
with group H. Moreover H has cohomological dimension 2 [DV73], and so
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there is a short exact sequence 0 — I'* — " —-71—0.Lett=ys and
h=a. Then m = (G H)/{(sa~!)) has a presentation of deficiency —1, and
B=T/T'(3,a+ 1). Since BT @4 (A/AB,a+ 1)), where A = Z[a a 1],
there is an exact sequence
a+1
(%)

Gatl, 12 T —=-B—0.

0—T

Suppose that 7 has deficiency 0. Then B has deficiency 0 as a left
I'-module, by the general argument above. Hence there is an exact sequence

0O—-L—->T1T?—=>T1?—-B—0.

Schanuel’s Lemma gives an isomorphism I't?T! = [, @ IT'?*2, on comparing
these two resolutions of B. The endomorphism of I'?™? given by projection
onto the second summand is an automorphism, by a theorem of Kaplansky (see
page 122 of [Ka69]). Hence L =0 and so B has a short free resolution. In
particular, Torg(R, B) = 0 for any right I'-module R. But it is easily verified
that if B = T'/(3,a+1)I is the conjugate right I'-module then Tor, (B, B) # 0.
Thus our assumption was wrong, and def(rm) = —1 < 0.

The group of the 2-twist spin of the trefoil knot is the simplest 2-knot
group with deficiency 0 [Fo62]. Levine showed that the group of the sum
of r copies of this knot has deficiency 1 — r [Le78]. If we use this sum
in our construction above 7w now has a presentation of deficiency —r and
B = (I'/T(3,a+ 1)), so there is an exact sequence

0T =T 51" 2B 0.

Is def(m) = —r?

Is there a finite homology 4-sphere group of negative deficiency ? Our
example above is “very infinite” in the sense that the Higman group H has
no finite quotients, and therefore no finite-dimensional representations over
any field [Hi51]. The simplest candidate to consider is perhaps the semidirect
product of SL(2,Fs) with the normal subgroup F?, and with the natural
action of SL(2,Fs) on F% (This semidirect product has a presentation with
3 generators and 5 relations, is superperfect, and has order 3000. I do not

know whether it is the group of an homology 4-sphere, nor whether it has
deficiency 0.)
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