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AN HOMOLOGY 4-SPHERE GROUP WITH NEGATIVE DEFICIENCY

by Jonathan A. HlLLMAN

Abstract. We give an example to show that homology 4-sphere groups need

not have deficiency 0.

The deficiency def(G) of a finitely presentable group G is the maximum

over all finite presentations V for G of the differences g — r, where g is the

number of generators and r is the number of relations in the presentation. It
is well-known that def(G) may be bounded above by homological invariants

[Ep61]. In high dimensions, whether a finitely presentable group can be

realized as the fundamental group of an n -manifold with prescribed homology
depends only on the homology of the group; in low dimensions (n < 4) such

conditions remain necessary, while constraints on the deficiency often suffice.

However bridging the gap between homologically necessary conditions and

combinatorially sufficient conditions is usually a delicate matter. This note
considers one such situation.

A group G is perfect if it is equal to its commutator subgroup G', i.e., if
the abelianization G/G' H\(G',Z) is trivial. If G is the fundamental group
of an homology -sphere then it is finitely presentable and superperfect, i.e.,

H\(G;Z) H2(G; Z) 0. These conditions characterize homology n-sphere

groups for n > 5 [Ke69], but in low dimensions more stringent conditions
hold. Every perfect group with a presentation of deficiency 0 is an homology
4-sphere group (and therefore is superperfect) [Ke69], but there are finite
superperfect groups which are not homology 4-sphere groups [HW85]. As

any closed 3 -manifold has a handlebody structure with one 0-handle and equal
numbers of 1- and 2-handles, homology 3-sphere groups have deficiency 0.
However although the finite groups SL(2, Fp) are perfect and have deficiency
0 for each prime p > 5 [CR80] the binary icosahedral group /* SL(2,F5)
is the only finite homology 3-sphere group.
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We shall give an example of an homology A-sphere whose group has

deficiency < 0. Thus none of the implications "G is an homology 3 -sphere

group" => "G is finitely presentable, perfect and def(G) 0 " =4> "G is an

homology 4-sphere group" => "G is finitely presentable and superperfect"
can be reversed.

A similar outcome was known for knots by the late 1970s. (Namely, none
of the implications "G is a 1-knot group" => "G is a high dimensional knot

group and def(G) 1" "G is a 2-knot group" "G is a high dimensional
knot group" can be reversed [Fo62, Ke65, Fa75]). The issue considered here

was raised by Plotnick, who suggested a possible example [P182]. (See also

[Be02]). We use a related construction, but our example is different, and we
do not know whether Plotnick's candidates indeed have negative deficiency.

The construction starts with a 2-knot K : S2 —> S4 and an homology
4-sphere X. Let M be the closed 4-manifold obtained by surgery on K, and

let N MjJX. Let G irfM) and H ttiÇL). (Thus G is the group of the

knot K.) Let t £ G represent a generator of G/G' Z, and let h £ H. The

conjugacy class of th~l £ tt\(N) G*H is represented by an unique isotopy
class of embeddings of S1 in A. Surgery on such an embedding gives an

homology 4-sphere P, with group tt tt\(P) (G * H)/{(th~1)).
Let p ((G/))7r be the normal closure of the image of G' in tt. Then

7r/p H, and so tt is the semidirect product p x H. Let F Z[H] and

let I Ker(e: T Z) be the augmentation ideal of H. Since H is finitely
presentable I has a resolution C* by free left F-modules which are finitely
generated in degrees < 2. Let B H\(tt\F) p/p' Then B is a left
F -module and there is an exact sequence 0—> B A -£ I —>0, in which
A — 1;T) is a relative homology group [Cr61]. Evaluating the Jacobian

matrix associated to a presentation for tt via the natural epimorphism from

Z[tt] to r gives a presentation matrix for A as a module (see [Cr61] or
[Fo62]). Thus there is an exact sequence D* : • • • -A Tm —> -A A —» 0,
where n—m def(7r). A mapping cone construction leads to an exact sequence
of the form © D\ —> C\ © Do B 0 C0 -> 0 and hence to a presentation
for B of the form C2 © D\ ® Co —y G\ ® Dq —> B.

Now let K be the 2-twist spin of the trefoil knot, with group
G= (x, s I je3 1, sxs~l — x~l), and let H be the Higman group with
presentation (a,b,c,d I bab~l — a2, cbc~l — b2, dcd~l c2, ada~x — d2).
Then H is perfect and def(A) 0, so there is an homology 4-sphere X

with group H. Moreover H has cohomological dimension 2 [DV73], and so
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there is a short exact sequence 0 —> T4 —>• T4 —» J —> 0. Let t — s and

h a. Then tt (G * H)/((sa~1)) has a presentation of deficiency -1, and

5 ^ r/r(3,a+ 1). Since 5 T ®a (A/A(3, a + 1)), where A Z[a,a~l],
there is an exact sequence

Suppose that 7r has deficiency 0. Then B has deficiency 0 as a left

r-module, by the general argument above. Hence there is an exact sequence

Schanuel's Lemma gives an isomorphism r1+/7+1 =L®rp+2, on comparing
these two resolutions of B. The endomorphism of Tp+2 given by projection
onto the second summand is an automorphism, by a theorem of Kaplansky (see

page 122 of [Ka69]). Hence L — 0 and so B has a short free resolution. In

particular, Tor^A,#) 0 for any right F-module R. But it is easily verified
that if B F/(3, a+ 1)F is the conjugate right F -module then Tor^ (5, B) ^ 0.

Thus our assumption was wrong, and def(7r) — 1 < 0.

The group of the 2-twist spin of the trefoil knot is the simplest 2-knot

group with deficiency 0 [Fo62]. Levine showed that the group of the sum
of r copies of this knot has deficiency 1 — r [Le78]. If we use this sum
in our construction above tt now has a presentation of deficiency — r and

B (r/F(3, a + l))r, so there is an exact sequence

Is def(?r) -r
Is there a finite homology 4-sphere group of negative deficiency? Our

example above is "very infinite" in the sense that the Higman group H has

no finite quotients, and therefore no finite-dimensional representations over
any field [Hi51]. The simplest candidate to consider is perhaps the semidirect
product of SL(2,F5) with the normal subgroup F|, and with the natural
action of SL(2,F5) on F2. (This semidirect product has a presentation with
3 generators and 5 relations, is superperfect, and has order 3000. I do not
know whether it is the group of an homology 4-sphere, nor whether it has

deficiency 0.)

O^L-^-^-^^O.

o ^ rr r2r -> rr b -» o.
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