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classes in codimension 2 by Zariski closed subsets. More precisely, we have
the following result.

THEOREM 1.6. Let M be a compact orientable smooth manifold of
dimension at least 5 and let G be a subgroup of H*(M;Z/2). Then the
following conditions are equivalent :

(a) There exist a nonsingular real algebraic variety X and a diffeomor-
phism ¢: X — M such that ¢*(G) = Hy,(X;Z/2).

(b) wa(M) € G C W2(M), where wy(M) is the second Stiefel-Whitney
class of M.

Proof. See [13].

Another application concerns the problem of approximation of smooth
curves (that is, one-dimensional smooth submanifolds) by algebraic curves.
First recall that a compact smooth submanifold N of a nonsingular real
algebraic variety X is said to admit an algebraic approximation in X if for
each neighborhood U of the inclusion map N < X (in the C*° topology on
the set C*°(NV,X) of smooth maps from N into X), there exists a smooth
embedding e: N — X such that e is in &/ and e(N) is a nonsingular Zariski
closed subset of X.

THEOREM 1.7. Let X be a compact nonsingular real algebraic variety
of dimension 3 and let C be a compact smooth curve in X. Then C admits
an algebraic approximation in X if and only if the Z/2-homology class
represented by C is in Hflg(X; Z/2).

The proof of Theorem 1.7 will be given elsewhere. Under the extra
assumption that C is connected and homologous to the union of finitely
many nonsingular real algebraic curves in X the theorem is proved in [4].

2. PROOF OF THE GROTHENDIECK FORMULA

We shall use homology and cohomology groups with coefficients exclu-
sively in Z/2 and therefore we shall suppress the coefficient group in our
notation.
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" For any continuous map f: (X,A) — (Y, B) between pairs of topological
spaces, we let :

fo: Hi(X,A) = H(Y,B), f*: H'(Y,B) — H"(X,A)

denote the induced homomorphisms.

For the convenience of the reader we shall now review some facts from
topology. Let B be a paracompact topological space and let £ = (E,w,B) be
a real vector bundle of rank k on B. Let so: B — E be the zero section
of &, that is, so(x) = 0, for all x in B, where 0, is the zero vector in the
fiber E, = 7~ !(x). We set Og = so(B). Recall that the Thom class 7¢ of £
is a unique element of H*(E,E~0g) such that for every point x in B, the
homomorphism

HYE,E~\0g) — H(E,, E,~{0,}) = Z/2,

induced by the inclusion map (Ej, E;~\{0,}) — (E,E~0g), sends 7¢ to the
generator of Z/2 [24, Theorem 8.1] (the name “Thom class” is not used in
[24]). For every nonnegative integer g, we have the Thom isomorphism

pq: HI(B) — H"M(E, EX05)
0 (v) =71 (W)U e for all v in HY(B)

[24, Definition 8.2].
If s: B — E is any continuous section of ¢ and 5: (B,B~s"'(0gp)) —
(E,E~0Og) 1s the map defined by s, then

2.1) wi(§) = " (57(1¢)) ,

where i: B = (B,@) — (B,B~s"1(0g)) is the inclusion map. Indeed, let
J: E — (E, EXOg) be the inclusion map. Note that H: E'x [0,1] — (E, ENOg),
defined by H(e,t) = (1 —t)j(e) +t(Soiom)(e) for all (e,r) in E x[0,1], is a
homotopy between j and Soiow. In particular, j* = (Soiom)* = 7* 0i* o5*,
and hence
71'*(1'*(5*(7‘5))) U ¢ :j*(Tg) UTe =1 UTg,

where the last equality is the standard property of the cup product [26,
p-251, property 8]. Thus oi(i*(5*(1¢))) = Te U 7¢. Now, (2.1) follows since
wi(€) = ¢ (e Ue) [24, p.91L.

Let M be a smooth m-dimensional manifold and let N be a smooth ...

n-dimensional submanifold of M. Assume that N is a closed subset of M.
A tubular neighborhood of N in M is a smooth real vector bundle ¢ = (E, 7, N)

on N such that E is an open neighborhood of N in M and Og= N- [20]). By - -
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the excision property, the inclusion map e: (E, ENN) — (M,M~N) induces
an 1somorphism
| e*: H"(M,M~N) — HX(E, E~N),

where k = m — n. The Thom class 7/ of N in M is a unique element of

H*(M,M~N) such that e*(T]{‘f ) = T¢. The Thom isomorphism yields
HY(M,M~N) = H°(N) .

Hence

(2.2) ™ generates H(M,M~N)=1Z/2,

provided N 1s connected. Assuming that N has exactly r connected compo-
nents Ni,...,N,, the inclusion maps ¢;: (M,M~N) — (M,M~N;) give rise
to an isomorphism

t: @ HYM,M~N;) — H"M, M~N)
i=1

f(l/tl, R Mr) - eT(ul) + -+ e;i:(ur)
satisfying
(2.3) HTp s s TR = To

If f: M — P is a smooth map between smooth manifolds, transverse to a

smooth submanifold Q of P (Q a closed subset of P) and with N = f~1(Q),
then

(2.4) el ==,

where f: (M,M~.N) — (P,P~Q) is the map defined by f. Indeed, after a
homotopy, f looks like a vector bundle map between tubular neighborhoods
of N and Q [20, p.117, Theorem 6.7], and hence (2.4) follows from the
definition of the Thom class.

Let A be the diagonal of M X M,

A={x,y) e M XM |x =y},

and let 7 in H™"(M x M,(M x M)~A) be the Thom class of A in M x M.
For every point x in M, the image of 7 under the homomorphism

H™(M x M,(M x M)~A) — H™(M, M~{x}) = Z/2

induced by the map (M, M~{x}) — (M xM, (M x M)\A), y — (x,y), generates
Z/2 [24, Lemma 11.7]. Thus 7 is the orientation class of M over Z/2 in
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the terminology used in [26, p.294]. For any pair (A,B) of subsets of M,
B C A, and any integer g satisfying 0 < g < m, let

Yap: Hy(A,B) = H" " I{(M~B, M~\A)
be the homomorphism defined by
Ya,8(a) = a~jy p(T),

where ~\ is the slant product and
Jap: (A X (M\B),(A X (M~A)UB x (M~B))) — (M x M,(M x M)\A)

is the inclusion map, cf. [26, p.351]. If B is empty, we shall write 74 instead
of v4 . The following naturality property is satisfied: if (A’, B’) is another
pair of subsets of M, B CA’, and A CA’, B C B, then the diagram

H,(A,B) —2%s H™ (M~ B,M~A)

(2.5) l l

Hy A", By 222 Hm=a(M~ B, M~A'),

where the vertical homomorphisms are induced by the appropriate inclusion
maps, is commutative [26, pp. 287, 289, 351]. Furthermore, if M is compact,
then

(2.6) w = Dy,

that is,
Yor 2 Hy(M) — H™ (M)

is the inverse of the Poincaré duality isomorphism
Dy H"9(M) — Hy(M), Dy(u) =un[M].

This follows from [26, p.305, Theorem 12] and the fact that, in the notation
of [26, p.353, Lemma 15], ¢ is the identity map, provided X =Y, G=17/2.
We shall also make use of the following result.

PROPOSITION 2.7. If M is compact and (A,B) is a compact polyhedral
pair in M, then

Ya,8: Hy(A,B) = H" I(M~B, M~\A)

is an isomorphism.
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Proof. We have the following diagram:

H,B) —L— H"9M,M~B)

l l

H,A) —2—  H"™ (M, M~A)
H,(A,B) —2s H™ 9(M~B,M~A)

l

H, ,(B) —2— H" 9t (M, M~ B)

l

H, 1(A) —2%— H" (M, M~A),

where the columns are parts of the long exact sequences for the pair (A, B)

and the triple (M,M~B,M~A). By (2.5) and [26, p.287, property 3, and

p.351], the diagram is commutative. It is proved in [26, p.351, Lemma 14]
that v4 and ~p are isomorphisms for ¢ and g— 1. In view of the five lemma,
Ya,p is also an isomorphism.  []

After this preparation, we are ready to prove an auxiliary result relating
homology and cohomology of real algebraic varieties. Let X be a compact
n-dimensional nonsingular real algebraic variety and let V be a d-dimensional
Zariski closed subset of X. By Theorem 1.1, V is a compact polyhedron and
hence

v Hy(V) — HY(X, X\V),

where ¢ = n — d, is an.isomorphism. in_view of Proposition 2.7. For our .. !

purposes it is important to give a characterization of yy([V]). Set S = Sing(V)
and let

i (XS, (XS (V) = X, X\V), j: X = (X, X\ V)

be the inclusion maps (of.course, X\V.= (X\S)\(V\S)). Since V \ § is
a d-dimensional nonsingular Zariski closed subset of X ~\ §, the Thom class
28 in HOX N S;(X N 8) N (VN S)) is defined.
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PROPOSITION 2.8. There exists a unique element iy in H'(X,X~\V) such

that

o X XS
(my) = Ty -

Furthermore,
7 =w({V]) and Dx(*() = [VIx.

Proof. We shall first prove i*(yyv([V])) = T‘),(\\g . The smooth manifold
V . S is a semialgebraic set and therefore has finitely many connected
components, say Ny,...,N, [11, p.35]. If V; is the closure of N; in V
and S; = V;NS, then N; = V; ~ §;. Note that V; and S; are compact
semialgebraic subsets of V [8, p.61 or 11, p.27]. By (2.5), we have the
following commutative diagram :

Hy V) -2 Hy(V,S) & élHdWi,Si)

'le i ’YV,SJ( é'YVi,SiJ/
i=1
HEX, X\ V) 5 HOXS, (XS~ (VS)) ¢ @ HXS;, (X~S)~Ny),
i=1

where ¢ 1is induced by the appropriate inclusion map, whereas

a(ab v 7ar) — O51(al) + -+ ar(a,),

/B(ula R 7ur) — ﬁl(ul) + -+ IBr(ur);
with

Q. Hd(‘/ia Sl) — Hd(V7 S)
Bit HX N Si, XNSHNN) = H X NS, X (V95))

induced by the inclusion maps.
Since Ni,...,N, are the connected components of the smooth manifold
V. §, we have another commutative diagram :

HEX NS, (X~ S)~ (V~8) «" élHC(X < Si, (X NS5 ~ )

zT _ . .E_?B?ﬁzl
DHXNS,XNH\N) L SHX NS, (XN )\ N,
where
wi: HC(X AN S,‘, (X AN Sl) AN Ni) — HC(X AN S, (X AN S) AN Nl)

is the homomorphism induced by the appropriate inclusion map and ¢ is the
isomorphism of (2.3). It follows from the definiton of the Thom class that
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(@) | il =,
Hence, in view of (2.2), 1; is an isomorphism of cyclic groups isomorphic
to Z/2. Applying (2.3) and (a), we get

XS XS, XS
(b) By, Ty ) = Tl -

Since, by Proposition 2.7, vy, s, is an isomorphism, the group Hy(V;,S;)
is isomorphic to Z/2; let a; be its unique generator. Now, (a) and (b) imply

’YV,S(OJ(CI], s ,Clr)) - T‘}/(:S? :
Thus in order to verify i*(yy([V])) = Tf,(\\g it suffices to prove
(C) O{(Cll, s s 7ar) = @([V]) 9

which can be done as follows. ,

Let @: |K| — V be a semialgebraic triangulation of V compatible with
{Vi,...,V,,81,...,8,} (Theorem 1.1). Denote by ¢; the chain which is the
sum of all d-simplices of K whose images under @ are contained in V;.
Since N; = V; ~ S, 1s a smooth d-dimensional manifold, it follows that
every open (d — 1)-simplex o of K with ®(o) contained in N; is a face
of exactly two d-simplices of K. Thus ¢; represents a nonzero homology
class in Hy(V;,S;) =& Z/2; in other words, c¢; represents a;. On the other
“hand, c¢; + --- 4+ ¢, 1s the sum of all d-simplices of K and therefore it is
a cycle representing the fundamental class [V] in Hy(V). Hence (c) follows
and i*(yy([V])) = roos is proved.

Let us observe that i* is injective. Indeed, there is an exact sequence

S HOX,XNS) = HEX,X N V) = HEXNS, X\ V) — -

corresponding to the triple (X, XS, X\ V). By Proposition 2.7, vs: Hz(S) —
He(X,X ~. S) is an isomorphism. Since dimS < d, we obtain H,(S) = 0,
which implies H(X,X \ §) = 0. Hence i* is injective as asserted.

Thus & = 4y([V]) is a unique element of H°(X,X \ V) satisfying
I X\ XS .
() = Ty ls -

It remains to prove DX(]'*(T{,‘)) = [Vlx. By (2.5), we have the following
commutative diagram:

Hy(V) —=— HyX)

’le ’Yxl
He(X,X~V) —— HeX),
where e: V — X is the inclusion map. In view of (2.6), yx is the inverse of Dy
and we obtain Dx(j*(7if)) = e.([V]) = [V]x. Thus the proof is complete. []
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We shall now recall a purely algebraic result. Definitions of algebraic terms
not explained here can all be found in [23]. Given a ring R (commutative with
identity), we let Ko(R) denote the Grothendieck group of finitely generated
projective R-modules. If S is a multiplicatively closed subset of R and
ST!R denotes the ring of fractions of R with denominators in §, then
the canonical ring homomorphism js: R — S™!R, js(r) = r/1, induces a
group homomorphism Ky(R) — Ko(S™'R). Assuming that R is a regular
ring of finite Krull dimension, every finitely generated R-module has a finite
projective resolution [23, p.208]. The last fact allows one to apply [6, p. 453,
Proposition 2.1, p.492, Proposition 6.1], which yields the result we require:
the homomorphism Ky(R) — Ko(S™'R) is surjective, provided that R is a
regular ring of finite Krull dimension (this also easily follows from [23,
p- 210, Exercise 4)).

To make use of this result we need some algebraic properties of the ring
R(X) of regular functions on a real algebraic variety X. Suppose that X is a
Zariski locally closed subset of R"” and let P(X) be the ring of polynomial
functions from X into R (f: X — R is a polynomial function if for some
polynomial P in R[T},...,T,], one has f(x) = P(x) for all x in X). Clearly,
P(X) 1s a finitely generated R-algebra and thus a Noetherian ring [23, p. 11].
Furthermore, the Krull dimension of P(X) is equal to dimX [11, p.50].
Recall that R(X) consists of all functions of the form f/g, where f,g are
in P(X) and ¢~'(0) = @. In other words, R(X) is the ring of fractions of
P(X) with denominators in the set {g € P(X) | g~'(0) = @}. It follows that
R(X) 1s a Noetherian ring of Krull dimension dimX [23, p.81]. Obviously,
for every point x in X,

my = {f € RX) | f(x) = 0}

is a maximal ideal of R(X) and each maximal ideal of R(X) is equal to
m, for some x. The localization R(X), of R(X) with respect to m, is a
Noetherian local ring of Krull dimension not exceeding dimX [23, p.81].
A point x in X is nonsingular if and only if the local ring R(X), is regular
of Krull dimension dimX [11, p.67]. In particular, the ring R(X) is regular
of finite Krull dimension, provided X is nonsingular. Given a Zariski open
subset U of X, the subset

SW)={g € RX) | g7 '(0) C X~ U}

of R(X) is multiplicatively closed. Since R(U) = S(U)"'R(X), it follows
from the facts reviewed above that the group homomorphism

(2.9) Ko(R(X)) = Ko(R(U)),
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induced by the restriction ring homomorphism R(X) — R(U), f — flu, is
surjective, assuming X is nonsingular.

PROPOSITION 2.10. Let X be a nonsingular real algebraic variety and
let U be a Zariski open subset of X. For any algebraic vector bundle
on U, there exists an algebraic vector bundle £ on X such that &|y and n
are algebraically stably equivalent (that is, one can find algebraically trivial
vector bundles € and e, on U with the property that the bundles (&|y) @ e
and 1@ ey on U are algebraically isomorphic).

Proof. Let Y be a real algebraic variety. For any algebraic vector bundle (
on Y, let I'(() denote the R(Y)-module of algebraic global sections of (. One
readily proves that the correspondence ( — I'({) establishes an equivalence
of the category of algebraic vector bundles on Y with the category of finitely
generated projective R(Y)-modules [11, Proposition 12.1.12]. The proposition
follows since (2.9) is surjective. [

Let Y be a real algebraic variety and let W be a Zariski closed subset

of Y. Denote by Iy(W) the ideal of R(Y) consisting of all regular functions
vanishing on W,

(W)= {f € RX)|f(»)=0forall yin W}.

The restriction homomorphism R(Y) — R(W), f — f|w, gives rise, for each
point y in W, to a ring epimorphism R(Y), — R(W),, whose kernel is
equal to the ideal Iy(W)R(Y), of R(Y),. In particular, the quotient ring
R(Y)y/Iy(WYR(Y), is isomorphic .to R(W),. Therefore if y in W is a
nonsingular point of ¥ and k = dimY —dim W, then given elements fi, ...,/
of Iy(W), the following conditions are equivalent:

i) IyW)YRX), = (fi,-.-,fiy R(Y), and y is a nonsingular point of W,

(i) y(WYRY)y = (fi,---,f)R(Y), and there exist elements fit1, ... ,fitd
of R(Y), d = dim W, such that fi, ..., fr+s generate the unique maximal
ideal of the local ring R(Y),,

(iii) the map (fi,...,fi): Y\ Sing(Y) — RF is trénsverse to 0 at y and
WNH = fl—l(O)ﬂ. : .ﬂfk—l(O)ﬂH , where H is a Zariski open neighborhood
of y in Y~ Sing(Y).

Indeed, the equivalence of (i) and (i1) is a consequence of [23, p. 169,
Proposition 1.10]. Furthermore, fi,...,fi+s generate the maximal ideal of
R(Y), if and only if there exists a neighborhood N of y in ¥\Sing(Y) such
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that the restriction of (fi,...,firq) to N is a local coordinate system for the
smooth manifold Y~ Sing(Y) [11, pp.66, 67]. Hence the equivalence of (i)
and (ii1) easily follows.

It also follows from [23, p.169, Proposition 1.10] that Iy(W)R(Y), is
generated by k elements, provided y in W is a nonsingular point of Y and
of W.

We shall freely use the facts just reviewed.

Proof of Theorem 1.5. By assumption, Dx(v) = [V]x, where V is a Zariski
closed subset of X with dimX —dimV = 2. If Vj,...,V, are the irreducible
components of V of dimension dimV, then [V]x = [Vi]x +--- +[V,]x, and
hence it suffices to prove the theorem assuming that V is irreducible.

Let xo be a nonsingular point of V. Then the ideal Ix(V)R(X),, of the
ring R(X),, can be generated by two elements; we choose generators a;,a;
that belong to Ix(V). Hence there exists a Zariski open neighborhood U of
Xo in X such that the ideal Ix(V)R(U) of the ring R(U) is generated by a;
and a,. This implies

(a) Ix(VYR(U), = (a1,a2)R(U), for all x in U .

Since Sing(V) is Zariski closed in V, shrinking U if necessary, we may
assume that U N Sing(V) = @. Hence from (a), we obtain

(b) the map (a,a,): U — R? is transverse to 0 in R>

at each point x in UN V.

Setting § = V~\(UNV), we have Sing(V) C S and, by virtue of irreducibility
of V,

(c) dim$S < dimV.

Let ¥ = X~\.§ and W = V\.S§. Then Y is a Zariski open subset of X and
W 1is a Zariski closed subset of Y, with dimY — dim W = 2.

CLAIM. There exist an algebraic vector bundle n = (E,m,Y) on Y and

an algebraic section s: Y — E of n such that n is of rank 2, W = s~1(0g),
and s is transverse to Og.

We prove the claim as follows. Choose a regular function b in R(Y) with
b=1(0) = W. Set by = ay|y for k=1,2, and define a map F:Y x R? - R?
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by
F(y,t) = F(y) = (1(y) + 1b(y)*, by(y) + t,b(y)%)

for all y in Y and ¢t = (t1,%,) in R>.

We assert that F is transverse to 0 in R?. Indeed, suppose F(y,f) = 0
for some (y,7) in ¥ x R?. If y is not in W, then the assertion holds since
it suffices to consider the partial derivatives with respect to #; and 7. If y
is in W, then (b) implies that F,: ¥ — R? is transverse to 0 in R? at y,
which means that the assertion also holds in this case. Hence the assertion is
proved.

It follows from the assertion and a standard transversality theorem [20,
p.79, Theorem 2.7] that there exists a point ¢ in R? for which the map

Fi=(fi,f): Y >R

is transverse to 0 in RZ. Since f; and f, are in Iy(W) and W is nonsingular,
we get
Ly(W)YR(Y)y = (J1,2RX)y

for all y in W. Hence for each point y in W, one can find a Zariski open
neighborhood G, of y in ¥ with

Iy(W)R(Gy) = (f1,2)R(Gy) .

In particular, W N G, = f{'(0) Nf, '(0) N G,. Taking G to be the union of
the G, for y in W, we get W =£;'(0)Nf, '(0) N G, which implies

(d) foyngs oy=wuw,

where W’ is a subset of Y disjoint from W. Clearly, W’ is contained
in YNG. Since WU W’ and Y~ G are Zariski closed subsets of Y, and
W = WUW)YNXT\G), it follows that W’ is also Zariski closed in Y. The
transversality of (fi,f2): ¥ — R? to 0 in R? together with (d)*imply

(e) Iy(W U W)R(Y), = (f1,/)R(Y), for all y in Y.

Choosing regular functions ; and %, in R(Y) with ¢ 10) = W and
(1 1(0) = W’ (this is possible since W and W’ are Zariski closed in Y), we
see that 117, belongs to Iy(W U W’) and hence

Y1y = hifi +haofo

for some regular functions #; and s, in R(Y) (the last assertion can easily
be deduced directly from (e), but, anyhow, it is also a consequence of (e) and
[23, p.93, Rule 1.1]).
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Let M,(R) denote the set of all real 2 x 2 matrices (identified with
R* and regarded as a real algebraic variety). Consider regular maps
g21: U =YW -—->MR) and g: U =Y\ W — M, (R) defined by

_ fia /1 —hy /3 - hy /5 ho /Y3 .
- hba/r Mt | . —fotbi /s fiv1 /12

For each point y in U; N U,, the matrices ¢i2(y) and g¢p;(y) are invertible
and g12(¥)g21(y) is the identity matrix. Define

E={0,v,n) e Y XR*xR*|v; = g0 if y € Uy
and v, = go1(y) vy if y € Uy}
and 7: E — Y, n(y,vi,v) = y. Since {U;,U,} is a Zariski open cover of
Y, it follows that E is a Zariski closed subset of ¥ x R? x R?. Clearly, 7 is

a regular map and, for each point y in Y, the fiber E, = 7~1(y) is a vector
subspace of {y} x R? x R?. Furthermore, the map

U x R = 771 (Up), 3,v) = @, 9 - v, gu®) - v)

is biregular for k = 1,2, where gu(y) is the identity matrix. Thus n = (E, w,Y)
1s an algebraic vector bundle of rank 2 on Y. The map s: ¥ — E

sO) = 0, (1), 0), (L)), L)1)

is an algebraic section of 1 with s~!(0z) = W. On U, the section s is
represented by (f1,/): Uy — R?, and therefore s is transverse to Oz. Hence
the claim is proved.

Let 5: (Y,Y~W) — (E,E~0g) be the map defined by s and let
2:Y — (Y, Y~ W) be the inclusion map. In view of (2.1), we have
wy(n) = £5(5*(1)), while (2.4) yields 5*(r,) = 1. It follows that

(f) wa(n) = £* (%) .

If i: (Y, VW)= X, X\V), j: X~ X,X\V), and e: Y — X are the
inclusion maps, then the diagram

HX(X,X\V) —" 5 HXY, Y~ W)

]

H*X) ——  HYY)

1S commutative.
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Since W C V~\ Sing(V), Proposition 2.8 yields
() fr) =1y, S =v.
By combining (d) and (e), we get
() wa(n) = £ (1) = € (7 (1)) = €"(v).

Proposition 2.10 implies that there exists an algebraic vector bundle ¢ on
X, whose restriction to Y is algebraically stably equivalent to n. In particular,
wy(n) = wy(C | Y) = e*(w2(¢)), and hence applying (h), we get

() e (v) = " (wa(Q)) .

Note that ¢* is injective. Indeed, there is an exact sequence
H2(X,Y) — HA(X) - HXY).

Since § = X\Y 1s Zariski closed in X, by Theorem 1.1 and Proposition 2.7,
H?*(X,Y) is isomorphic to H,_,(S), where n = dimX. Observing that
dimV = n—2 and applying (c), we obtain H,_,(S) = 0. Thus e* is injective
and (i) implies

(]) wz(C) =v.

The vector bundle (, being algebraic, has a constant rank on each
irreducible component of X. It follows that there exists an algebraic vector
bundle € on X such that the restriction of e to each irreducible component
of X is algebraically trivial and ( @ ¢ has constant rank, say, » on X. The
line bundle A = A"({ @ €) is algebraic [11, Proposition 12.1.8] and hence the
vector bundle £ = (PePB AP AP A is also algebraic. Since wi(A) = wi((Pe)
[21, p.246], we have w;(§) = 0 and, in view of (j), wa(§) = v. Thus the
proof is complete. [
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