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A TOPOLOGICAL PROOF OF THE GROTHENDIECK FORMULA
IN REAL ALGEBRAIC GEOMETRY

by J. BOCHNAK and W. KUCHARZ *)

INTRODUCTION

In 1973 A. Tognoli [28], improving upon earlier work of J. Nash [25],
demonstrated that every closed (compact without boundary) smooth manifold
M is diffeomorphic to a nonsingular algebraic subset X of R" for some n.
The reader can also consult [11, Theorem 14.1.10] for a proof that requires the
reading of only a few pages of [11]. This remarkable result of Nash-Tognoli
soon gave rise to a larger program. By carefully choosing X one wanted
to realize algebraically not only M alone, but also some objects such as
submanifolds, vector bundles, homology or cohomology classes, etc. attached
to 1it.

Examples of successes include the relative Nash-Tognoli theorem dealing
with finite collections of smooth submanifolds of M [1] and a theorem
asserting that X can be selected in such a way that every topological real
vector bundle on X is isomorphic to an algebraic vector bundle [9]. A special
case of the relative Nash-Tognoli theorem was used in [2] to obtain an elegant
topological characterization of real algebraic sets with isolated singularities.
A conjecture was put forward that X can be chosen with each homology class
in H,(X;Z/2) represented by an algebraic subset of X [3]; this would have
simplified many constructions and facilitated a topological characterization of
all real algebraic sets.

However, the conjecture was refuted in [7] by the following argument. For
any integer m > 11, there exist an m-dimensional closed smooth manifold M

*) Both authors were partially supported by the Volkswagen Stiftung (Research in Pairs at
Oberwolfach) and European grant RAAG 2002-2006.
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and a cohomology class v in H*(M;Z/2) such that v cannot be represented
as the second Stiefel-Whitney class of a real vector bundle on M (it is
now known that m > 11 can be replaced by m > 6, which is sharp [27]).
On the other hand, for any compact nonsingular real algebraic set X, each
cohomology class in H*(X;Z/2), whose Poincaré dual homology class can
be represented by an algebraic subset of X, is the second Stiefel-Whitney
class of some algebraic vector bundle on X. Therefore the conjecture has to
be false.

We call the latter part of the argument the Grothendieck formula in real
algebraic geometry. This was proved in [7] in two steps. First a proof of
the Grothendieck formula relating vector bundles and algebraic cycles on
schemes over R was sketched (an analog of the formula from earlier papers
[18, 19] for varieties over an algebraically closed field); this sketch contains
some flaws. Then a connection, established in [15], between the Chern classes
with values in the Chow ring and the Stiefel-Whitney classes yielded the
conclusion. The appearance of [17] allowed for a shorter proof [12], based
on the same principles and free from the flaws mentioned above. According
to the authors’ experience such proofs still present considerable difficulty for
many topologically inclined mathematicians. The goal of this paper is to give a
self-contained topological proof that uses only the simplest facts from algebra.
Several applications of the Grothendieck formula in real algebraic geometry,
besides the one discussed above, are contained in [12, 13, 22].

The paper assumes knowledge of singular homology and cohomology with
coefficients in Z/2 at the level of [26]. Real vector bundles and their Stiefel-
Whitney classes, for which a good reference 1s [24], are also used. All smooth
(of class C°°) manifolds are assumed to be paracompact and without boundary.
From real algebraic geometry we require only a few notions, recalled here
and elucidated in detail in just a few pages of [5], [8], or [11]. Basic and
generally well-known facts from commutative algebra that are needed can all
be found in [23].

1. THE GROTHENDIECK FORMULA

REAL ALGEBRAIC VARIETIES

The Zariski topology on R" is the topology for which the closed sets
are precisely the algebraic subsets of R". Let V be a nonempty Zariski
locally closed subset of R™ (that is, V 1is the difference of two algebraic
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subsets of R"). The dimension dimV of V is the largest integer d for
which there exist an open subset N of R” (in the usual metric topology) and
polynomials Pi,...,P,—4 in R[Ti,...,T,] such that NNV 1S a nonempty
set, VCZ, NNV =NnNZ, where

Z={zeR"|Pi(z) =" = P,_q(2) =0},

OP; . .
and the Jacobian matrix {6—T(z)}, 1<i<n-—d, 1<j<n, hasrank n—d
J

for every point z in NNV (several other characterizations of dim V' are given
in [8, Sect. 3.4 and 11, Sect. 2.8]). A point x in V is said to be nonsingular if
one can find N and P, ...,P,_4 as above, with x in NNV and d = dimV ;
otherwise x is called singular (this agrees with [5, 11], whereas in [8] a
slightly different definition is used, with the condition d = dimV omitted).
Clearly, the set of all nonsingular points of V is a smooth submanifold of R"
of dimension dim V. Consider V endowed with the Zariski topology induced
from R". The set Sing(V) of all singular points of V is Zariski closed in V
and

dim Sing(V) < dim V

[5, p.28 or 8, p.137 or 11, p.69]. If Sing(V) is empty, V is said to be
nonsingular.

Recall that V is irreducible if it cannot be represented as the union of two
Zariski closed subsets of V, distinct from V. Assuming that V is irreducible,
one has dim W < dim V for every Zariski closed subset W of V, W # V [5,
p.28 or 8, p.136 or 11, p.50]. If V is not irreducible, then V =V, U... UV,
where Vi,...,V, are irreducible Zariski closed subsets of V, with V; not
contained in V; for i # j; the sets Vi,...,V, are uniquely determined and
called the irreducible components of V [5, p.20 or 8, p.119 or 11, p.50].

A function f: V — R is said to be regular if for every point x in V,
there exist an open neighborhood (in the Zariski topology) U, of x in V
and two polynomials P and Q in R[T},...,T,] such that Q(y) # O and
f(») = P(@)/Q() for all y in U,. In fact, one can take U, = V, and hence f
is always a quotient of two polynomials f = P/Q with QO(y) # 0 for all y in
V [5, p.19 or 8, p.121 or 11, p.62]. The set R(V) of all regular functions
on V forms a ring under pointwise addition and multiplication.

Throughout this paper, a real algebraic variety is, by definition, a Zariski
locally closed subset of R", for some n. A map ¢: V — W between real
algebraic varieties, W C RP, is called regular if each component ¢; of
© = (p1,...,¢p) is in R(V). If, moreover, ¢ is bijective and ¢~ ! is regular,
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we call ¢ biregular. One easily sees that.nonsingular points and dimension
are invariant under biregular maps [5, p.28, or 8, p. 126 or 11, p.67].

Unless explicitly stated otherwise, all topological notions related to real
algebraic varieties will refer to the usual metric topology.

COMBINATORIAL PROPERTIES OF REAL ALGEBRAIC VARIETIES

Recall that the semialgebraic subsets of R"” form the smallest family of
subsets containing all sets of the form |

{x € R" | P(x) > 0}, where P is in R[T},...,T,],

and closed under taking finite unions, finite intersections, and complements.
Obviously, any algebraic subset of R” is semialgebraic.

We shall make use of the following important result (for its proof cf. [8,
Theorem 2.6.12] or [11, Theorem 9.2.1]):

THEOREM 1.1. Let T be a compact semialgebraic set. Given a finite family
F of semialgebraic subsets of T, there exists a semialgebraic triangulation
of T compatible with F.

In other words, there exist a simplicial complex K and a homeomorphism
®: |K| — T, where |K| is the polyhedron determined by K, such that for
each open simplex o of K ‘and each set 'S'in-F, the image ®(o) is a
semialgebraic subset of T, which is either contained in or disjoint from S§.

For any pair (X,A) of topological spaces, the Euler-Poincaré characteristic
x(X,A) is defined by

XX,A) = (=1 dimg ), H(X,A;Z/2),
r>0
provided that dimgz /, H,(X, A; Z/2) is finite for all » > 0 and equals O for all
r large enough (if the homology group H.(X,A;Z) is finitely generated, then
this defintion coincides with the usual one [16, Proposition VI.7.21]). If x(X)
and x(A) are defined, then y(X,A) is also defined and x(X,A) = x(X) — x(A)

- [16, Proposition V.5.7]. If K is a finite simplicial complex and £, is ‘the

number of r-simplices in K, then
XUKD =D (=1)%,.
r>0

Note that for any compact real algebraic variety V, the Euler-Poincaré
characteristic x(V,V ~ {x}) is defined for every point x of V. Indeed,
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by Theorem 1.1, there exists a triangulation ®: |K| — V of V such that
®(v) = x for some vertex v of K. If L is the subcomplex of K of all
simplices that do not have v as a vertex, then |L| is a deformation retract of
|K| ~ {v}, and hence

x(V, V~Ax}) = x([K|, |[K|~{v}) = x(IK], |L]) = x(IK]) = x(|L]).
It follows that

(1.2) XV, Vs fxh) =D (=1)m,,

r>0

where m, is the number of r-simplices of K having v as a vertex.

THEOREM 1.3. Let V be a compact real algebraic variety. Then for every
point x in V, the Euler-Poincaré characteristic x(V, V~{x}) is an odd integer.

Reference for the proof. Tt is proved in [8, Theorem 3.10.4], by a nice
topological argument, that

Y dimg, Ho(V, VS {x}; Z/2)
r>0

is an odd integer. This is equivalent to Theorem 1.3. [

COROLLARY 1.4. Let V be a compact d-dimensional real algebraic variety
and let ®: |K| — V. be a triangulation of V. Then for any (d — 1)-simplex
o of K, the number n(o) of d-simplices of K having-o as a face is even.

Proof. Let 7y,...,Tyo) be the d-simplices of K having o as a face. Let
K’ be the barycentric subdivision of K and let b be the barycenter of o.
Denote by n; the number of simplices s of the barycentric subdivision of 7;
such that b is a vertex of s and s is not in the barycentric subdivision of o.
One readily sees that n; is odd. Let n be the number of simplices in the
barycentric subdivision of ¢ having b as a vertex. Clearly, n is odd. Note
that n 4+ ny + -+ - + nye) is the number of simplices of K’ having b as a
vertex. In view of (1.2) and Theorem 1.3, n(c) has to be even. Hence the
proof is complete.  [J]

ALGEBRAIC CYCLES

Given a compact d-dimensional real algebraic variety V, we shall now

define a homology class [V] in Hy(V,Z/2) playing a special role in various
problems concerning geometry and topology of varieties.
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Choose a semialgebraic triangulation of V (Theorem 1.1). By Corollary 1.4,
the sum of all d-simplices of this triangulation is a cycle with coefficients
in Z/2. The homology class [V] in Hy(V,Z/2) represented by this cycle
is independent of the choice of the triangulation. Indeed, taking any two
semialgebraic triangulations of V we can, using Theorem 1.1, find a third
one, which is a common subdivision of the two. The uniqueness of [V] follows
immediately.

The excision property implies that for each nonsingular point x of V, the
image of [V] by the canonical homomorphism

Hy(V;Z)2) — Hy(V,V~{x};2/2) = Z./2

is nonzero. The class [V] is called the fundamental class of V. If V 1is
nonsingular, then [V] coincides with the fundamental class of V regarded
as a manifold. For other, equivalent, definitions of the fundamental class,
cf. [10, 14, 15].

Let X be a compact real algebraic variety. For any d-dimensional Zariski
closed subset V of X, we call the element [V]x = i.([V]) of Hy(X;Z/2),
where i: V < X is the inclusion map, the homology class of X represented
by V. Denote by

HY%(X;Z,/2)

the subgroup of H,(X;Z/2) generated by all homology classes of X repre-
sented by d-dimensional Zariski closed subsets of X. Given two d-dimensional
Zariski closed subsets V; and V, of X, we have [Vi]x+[Valx = [Wlx, where
W is the union of the irreducible d-dimensional components of V; UV, not
contained in V; N V. It follows that every element of H jlg(X ;Z./2) is of the
form [V]x for some d-dimensional Zariski closed subset V of X.

Assuming that X is compact and nonsingular, we set

(X Z/2) = Dy (H3*(X; Z2,/2)),

where ¢ +d = dimX and Dy: H(X;Z/2) — Hy(X;Z/2) is the Poincaré
duality isomorphism, Dx(u) = uN[X] for every u in H°(X;Z/2). The groups
H slg(X ;Z,/2) and Hg,(X;Z/2) are important invariants of compact nonsingular
real algebraic varieties. The reader can refer to [14] for a short survey of their
properties and applications, and for a more extensive list of references. These
groups have the expected functorial properties, which however will neither be
proved nor used here.
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THE GROTHENDIECK FORMULA

In order to state the Grothendieck formula, we have to recall the definition
of an algebraic vector bundle.

An algebraic vector bundle on a real algebraic variety X is a triple
¢ = (E,m,X), where E is a real algebraic variety, 7: E — X is a regular
map, and the following conditions are satisfied:

(i) for every point x in X, the fiber E, = 7~ 1(x) is a real vector space,

(ii) there exist a finite cover {Ux},c, of X by Zariski open sets,
and for each A in A, a nonnegative integer k and a biregular map
o: 7 YUy — Uy x R* such that o(E,) = {x} x R* and the restriction
E, — {x} X R* of ¢ is a linear isomorphism for every x in Uy,

(iii) € is an algebraic subbundle of the trivial vector bundle X x R?, for
some p.

Condition (iii) means that there exists a regular map i: E — X X R? such
that i(E,) C {x} x R? and the restriction E, — {x} x R? of i is an injective
linear map for every x in X.

Basic properties of algebraic vector bundles can be found in [11, Chap-
ter 12]. The reader should keep in mind that algebraic vector bundles considered
here are sometimes called strongly algebraic vector bundles in the literature
(9, 10, 13].

Our main goal is to give a self-contained proof of the following
Grothendieck formula.

THEOREM 1.5. Let X be a compact nonsingular real algebraic variety.

For every cohomology class v in Hﬁlg(X 7 / 2), there exists an algebraic vector

bundle & on X with wi(§) =0 and wy(§) = v.

Here wy(—) stands for the k™ Stiefel-Whitney class.

We end this section by stating two results whose proofs use, in an essential
way, the Grothendieck formula.

Given a compact smooth manifold M, let us denote by Vect(M) the set
of isomorphism classes of topological real vector bundles on M and define

W2 (M) = {v € H*(M;Z/2) | v=w,(§) for some ¢ in Vect(M)} .

One easily sees that W2(M) is a subgroup of H?(M;Z/2). As mentioned in
the introduction, in general, W?(M) + H*(M;Z /2) for dimM > 6. The group
W2(M) plays a crucial role in the problem of representation of homology
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classes in codimension 2 by Zariski closed subsets. More precisely, we have
the following result.

THEOREM 1.6. Let M be a compact orientable smooth manifold of
dimension at least 5 and let G be a subgroup of H*(M;Z/2). Then the
following conditions are equivalent :

(a) There exist a nonsingular real algebraic variety X and a diffeomor-
phism ¢: X — M such that ¢*(G) = Hy,(X;Z/2).

(b) wa(M) € G C W2(M), where wy(M) is the second Stiefel-Whitney
class of M.

Proof. See [13].

Another application concerns the problem of approximation of smooth
curves (that is, one-dimensional smooth submanifolds) by algebraic curves.
First recall that a compact smooth submanifold N of a nonsingular real
algebraic variety X is said to admit an algebraic approximation in X if for
each neighborhood U of the inclusion map N < X (in the C*° topology on
the set C*°(NV,X) of smooth maps from N into X), there exists a smooth
embedding e: N — X such that e is in &/ and e(N) is a nonsingular Zariski
closed subset of X.

THEOREM 1.7. Let X be a compact nonsingular real algebraic variety
of dimension 3 and let C be a compact smooth curve in X. Then C admits
an algebraic approximation in X if and only if the Z/2-homology class
represented by C is in Hflg(X; Z/2).

The proof of Theorem 1.7 will be given elsewhere. Under the extra
assumption that C is connected and homologous to the union of finitely
many nonsingular real algebraic curves in X the theorem is proved in [4].

2. PROOF OF THE GROTHENDIECK FORMULA

We shall use homology and cohomology groups with coefficients exclu-
sively in Z/2 and therefore we shall suppress the coefficient group in our
notation.
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" For any continuous map f: (X,A) — (Y, B) between pairs of topological
spaces, we let :

fo: Hi(X,A) = H(Y,B), f*: H'(Y,B) — H"(X,A)

denote the induced homomorphisms.

For the convenience of the reader we shall now review some facts from
topology. Let B be a paracompact topological space and let £ = (E,w,B) be
a real vector bundle of rank k on B. Let so: B — E be the zero section
of &, that is, so(x) = 0, for all x in B, where 0, is the zero vector in the
fiber E, = 7~ !(x). We set Og = so(B). Recall that the Thom class 7¢ of £
is a unique element of H*(E,E~0g) such that for every point x in B, the
homomorphism

HYE,E~\0g) — H(E,, E,~{0,}) = Z/2,

induced by the inclusion map (Ej, E;~\{0,}) — (E,E~0g), sends 7¢ to the
generator of Z/2 [24, Theorem 8.1] (the name “Thom class” is not used in
[24]). For every nonnegative integer g, we have the Thom isomorphism

pq: HI(B) — H"M(E, EX05)
0 (v) =71 (W)U e for all v in HY(B)

[24, Definition 8.2].
If s: B — E is any continuous section of ¢ and 5: (B,B~s"'(0gp)) —
(E,E~0Og) 1s the map defined by s, then

2.1) wi(§) = " (57(1¢)) ,

where i: B = (B,@) — (B,B~s"1(0g)) is the inclusion map. Indeed, let
J: E — (E, EXOg) be the inclusion map. Note that H: E'x [0,1] — (E, ENOg),
defined by H(e,t) = (1 —t)j(e) +t(Soiom)(e) for all (e,r) in E x[0,1], is a
homotopy between j and Soiow. In particular, j* = (Soiom)* = 7* 0i* o5*,
and hence
71'*(1'*(5*(7‘5))) U ¢ :j*(Tg) UTe =1 UTg,

where the last equality is the standard property of the cup product [26,
p-251, property 8]. Thus oi(i*(5*(1¢))) = Te U 7¢. Now, (2.1) follows since
wi(€) = ¢ (e Ue) [24, p.91L.

Let M be a smooth m-dimensional manifold and let N be a smooth ...

n-dimensional submanifold of M. Assume that N is a closed subset of M.
A tubular neighborhood of N in M is a smooth real vector bundle ¢ = (E, 7, N)

on N such that E is an open neighborhood of N in M and Og= N- [20]). By - -
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the excision property, the inclusion map e: (E, ENN) — (M,M~N) induces
an 1somorphism
| e*: H"(M,M~N) — HX(E, E~N),

where k = m — n. The Thom class 7/ of N in M is a unique element of

H*(M,M~N) such that e*(T]{‘f ) = T¢. The Thom isomorphism yields
HY(M,M~N) = H°(N) .

Hence

(2.2) ™ generates H(M,M~N)=1Z/2,

provided N 1s connected. Assuming that N has exactly r connected compo-
nents Ni,...,N,, the inclusion maps ¢;: (M,M~N) — (M,M~N;) give rise
to an isomorphism

t: @ HYM,M~N;) — H"M, M~N)
i=1

f(l/tl, R Mr) - eT(ul) + -+ e;i:(ur)
satisfying
(2.3) HTp s s TR = To

If f: M — P is a smooth map between smooth manifolds, transverse to a

smooth submanifold Q of P (Q a closed subset of P) and with N = f~1(Q),
then

(2.4) el ==,

where f: (M,M~.N) — (P,P~Q) is the map defined by f. Indeed, after a
homotopy, f looks like a vector bundle map between tubular neighborhoods
of N and Q [20, p.117, Theorem 6.7], and hence (2.4) follows from the
definition of the Thom class.

Let A be the diagonal of M X M,

A={x,y) e M XM |x =y},

and let 7 in H™"(M x M,(M x M)~A) be the Thom class of A in M x M.
For every point x in M, the image of 7 under the homomorphism

H™(M x M,(M x M)~A) — H™(M, M~{x}) = Z/2

induced by the map (M, M~{x}) — (M xM, (M x M)\A), y — (x,y), generates
Z/2 [24, Lemma 11.7]. Thus 7 is the orientation class of M over Z/2 in
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the terminology used in [26, p.294]. For any pair (A,B) of subsets of M,
B C A, and any integer g satisfying 0 < g < m, let

Yap: Hy(A,B) = H" " I{(M~B, M~\A)
be the homomorphism defined by
Ya,8(a) = a~jy p(T),

where ~\ is the slant product and
Jap: (A X (M\B),(A X (M~A)UB x (M~B))) — (M x M,(M x M)\A)

is the inclusion map, cf. [26, p.351]. If B is empty, we shall write 74 instead
of v4 . The following naturality property is satisfied: if (A’, B’) is another
pair of subsets of M, B CA’, and A CA’, B C B, then the diagram

H,(A,B) —2%s H™ (M~ B,M~A)

(2.5) l l

Hy A", By 222 Hm=a(M~ B, M~A'),

where the vertical homomorphisms are induced by the appropriate inclusion
maps, is commutative [26, pp. 287, 289, 351]. Furthermore, if M is compact,
then

(2.6) w = Dy,

that is,
Yor 2 Hy(M) — H™ (M)

is the inverse of the Poincaré duality isomorphism
Dy H"9(M) — Hy(M), Dy(u) =un[M].

This follows from [26, p.305, Theorem 12] and the fact that, in the notation
of [26, p.353, Lemma 15], ¢ is the identity map, provided X =Y, G=17/2.
We shall also make use of the following result.

PROPOSITION 2.7. If M is compact and (A,B) is a compact polyhedral
pair in M, then

Ya,8: Hy(A,B) = H" I(M~B, M~\A)

is an isomorphism.
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Proof. We have the following diagram:

H,B) —L— H"9M,M~B)

l l

H,A) —2—  H"™ (M, M~A)
H,(A,B) —2s H™ 9(M~B,M~A)

l

H, ,(B) —2— H" 9t (M, M~ B)

l

H, 1(A) —2%— H" (M, M~A),

where the columns are parts of the long exact sequences for the pair (A, B)

and the triple (M,M~B,M~A). By (2.5) and [26, p.287, property 3, and

p.351], the diagram is commutative. It is proved in [26, p.351, Lemma 14]
that v4 and ~p are isomorphisms for ¢ and g— 1. In view of the five lemma,
Ya,p is also an isomorphism.  []

After this preparation, we are ready to prove an auxiliary result relating
homology and cohomology of real algebraic varieties. Let X be a compact
n-dimensional nonsingular real algebraic variety and let V be a d-dimensional
Zariski closed subset of X. By Theorem 1.1, V is a compact polyhedron and
hence

v Hy(V) — HY(X, X\V),

where ¢ = n — d, is an.isomorphism. in_view of Proposition 2.7. For our .. !

purposes it is important to give a characterization of yy([V]). Set S = Sing(V)
and let

i (XS, (XS (V) = X, X\V), j: X = (X, X\ V)

be the inclusion maps (of.course, X\V.= (X\S)\(V\S)). Since V \ § is
a d-dimensional nonsingular Zariski closed subset of X ~\ §, the Thom class
28 in HOX N S;(X N 8) N (VN S)) is defined.
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PROPOSITION 2.8. There exists a unique element iy in H'(X,X~\V) such

that

o X XS
(my) = Ty -

Furthermore,
7 =w({V]) and Dx(*() = [VIx.

Proof. We shall first prove i*(yyv([V])) = T‘),(\\g . The smooth manifold
V . S is a semialgebraic set and therefore has finitely many connected
components, say Ny,...,N, [11, p.35]. If V; is the closure of N; in V
and S; = V;NS, then N; = V; ~ §;. Note that V; and S; are compact
semialgebraic subsets of V [8, p.61 or 11, p.27]. By (2.5), we have the
following commutative diagram :

Hy V) -2 Hy(V,S) & élHdWi,Si)

'le i ’YV,SJ( é'YVi,SiJ/
i=1
HEX, X\ V) 5 HOXS, (XS~ (VS)) ¢ @ HXS;, (X~S)~Ny),
i=1

where ¢ 1is induced by the appropriate inclusion map, whereas

a(ab v 7ar) — O51(al) + -+ ar(a,),

/B(ula R 7ur) — ﬁl(ul) + -+ IBr(ur);
with

Q. Hd(‘/ia Sl) — Hd(V7 S)
Bit HX N Si, XNSHNN) = H X NS, X (V95))

induced by the inclusion maps.
Since Ni,...,N, are the connected components of the smooth manifold
V. §, we have another commutative diagram :

HEX NS, (X~ S)~ (V~8) «" élHC(X < Si, (X NS5 ~ )

zT _ . .E_?B?ﬁzl
DHXNS,XNH\N) L SHX NS, (XN )\ N,
where
wi: HC(X AN S,‘, (X AN Sl) AN Ni) — HC(X AN S, (X AN S) AN Nl)

is the homomorphism induced by the appropriate inclusion map and ¢ is the
isomorphism of (2.3). It follows from the definiton of the Thom class that
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(@) | il =,
Hence, in view of (2.2), 1; is an isomorphism of cyclic groups isomorphic
to Z/2. Applying (2.3) and (a), we get

XS XS, XS
(b) By, Ty ) = Tl -

Since, by Proposition 2.7, vy, s, is an isomorphism, the group Hy(V;,S;)
is isomorphic to Z/2; let a; be its unique generator. Now, (a) and (b) imply

’YV,S(OJ(CI], s ,Clr)) - T‘}/(:S? :
Thus in order to verify i*(yy([V])) = Tf,(\\g it suffices to prove
(C) O{(Cll, s s 7ar) = @([V]) 9

which can be done as follows. ,

Let @: |K| — V be a semialgebraic triangulation of V compatible with
{Vi,...,V,,81,...,8,} (Theorem 1.1). Denote by ¢; the chain which is the
sum of all d-simplices of K whose images under @ are contained in V;.
Since N; = V; ~ S, 1s a smooth d-dimensional manifold, it follows that
every open (d — 1)-simplex o of K with ®(o) contained in N; is a face
of exactly two d-simplices of K. Thus ¢; represents a nonzero homology
class in Hy(V;,S;) =& Z/2; in other words, c¢; represents a;. On the other
“hand, c¢; + --- 4+ ¢, 1s the sum of all d-simplices of K and therefore it is
a cycle representing the fundamental class [V] in Hy(V). Hence (c) follows
and i*(yy([V])) = roos is proved.

Let us observe that i* is injective. Indeed, there is an exact sequence

S HOX,XNS) = HEX,X N V) = HEXNS, X\ V) — -

corresponding to the triple (X, XS, X\ V). By Proposition 2.7, vs: Hz(S) —
He(X,X ~. S) is an isomorphism. Since dimS < d, we obtain H,(S) = 0,
which implies H(X,X \ §) = 0. Hence i* is injective as asserted.

Thus & = 4y([V]) is a unique element of H°(X,X \ V) satisfying
I X\ XS .
() = Ty ls -

It remains to prove DX(]'*(T{,‘)) = [Vlx. By (2.5), we have the following
commutative diagram:

Hy(V) —=— HyX)

’le ’Yxl
He(X,X~V) —— HeX),
where e: V — X is the inclusion map. In view of (2.6), yx is the inverse of Dy
and we obtain Dx(j*(7if)) = e.([V]) = [V]x. Thus the proof is complete. []
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We shall now recall a purely algebraic result. Definitions of algebraic terms
not explained here can all be found in [23]. Given a ring R (commutative with
identity), we let Ko(R) denote the Grothendieck group of finitely generated
projective R-modules. If S is a multiplicatively closed subset of R and
ST!R denotes the ring of fractions of R with denominators in §, then
the canonical ring homomorphism js: R — S™!R, js(r) = r/1, induces a
group homomorphism Ky(R) — Ko(S™'R). Assuming that R is a regular
ring of finite Krull dimension, every finitely generated R-module has a finite
projective resolution [23, p.208]. The last fact allows one to apply [6, p. 453,
Proposition 2.1, p.492, Proposition 6.1], which yields the result we require:
the homomorphism Ky(R) — Ko(S™'R) is surjective, provided that R is a
regular ring of finite Krull dimension (this also easily follows from [23,
p- 210, Exercise 4)).

To make use of this result we need some algebraic properties of the ring
R(X) of regular functions on a real algebraic variety X. Suppose that X is a
Zariski locally closed subset of R"” and let P(X) be the ring of polynomial
functions from X into R (f: X — R is a polynomial function if for some
polynomial P in R[T},...,T,], one has f(x) = P(x) for all x in X). Clearly,
P(X) 1s a finitely generated R-algebra and thus a Noetherian ring [23, p. 11].
Furthermore, the Krull dimension of P(X) is equal to dimX [11, p.50].
Recall that R(X) consists of all functions of the form f/g, where f,g are
in P(X) and ¢~'(0) = @. In other words, R(X) is the ring of fractions of
P(X) with denominators in the set {g € P(X) | g~'(0) = @}. It follows that
R(X) 1s a Noetherian ring of Krull dimension dimX [23, p.81]. Obviously,
for every point x in X,

my = {f € RX) | f(x) = 0}

is a maximal ideal of R(X) and each maximal ideal of R(X) is equal to
m, for some x. The localization R(X), of R(X) with respect to m, is a
Noetherian local ring of Krull dimension not exceeding dimX [23, p.81].
A point x in X is nonsingular if and only if the local ring R(X), is regular
of Krull dimension dimX [11, p.67]. In particular, the ring R(X) is regular
of finite Krull dimension, provided X is nonsingular. Given a Zariski open
subset U of X, the subset

SW)={g € RX) | g7 '(0) C X~ U}

of R(X) is multiplicatively closed. Since R(U) = S(U)"'R(X), it follows
from the facts reviewed above that the group homomorphism

(2.9) Ko(R(X)) = Ko(R(U)),
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induced by the restriction ring homomorphism R(X) — R(U), f — flu, is
surjective, assuming X is nonsingular.

PROPOSITION 2.10. Let X be a nonsingular real algebraic variety and
let U be a Zariski open subset of X. For any algebraic vector bundle
on U, there exists an algebraic vector bundle £ on X such that &|y and n
are algebraically stably equivalent (that is, one can find algebraically trivial
vector bundles € and e, on U with the property that the bundles (&|y) @ e
and 1@ ey on U are algebraically isomorphic).

Proof. Let Y be a real algebraic variety. For any algebraic vector bundle (
on Y, let I'(() denote the R(Y)-module of algebraic global sections of (. One
readily proves that the correspondence ( — I'({) establishes an equivalence
of the category of algebraic vector bundles on Y with the category of finitely
generated projective R(Y)-modules [11, Proposition 12.1.12]. The proposition
follows since (2.9) is surjective. [

Let Y be a real algebraic variety and let W be a Zariski closed subset

of Y. Denote by Iy(W) the ideal of R(Y) consisting of all regular functions
vanishing on W,

(W)= {f € RX)|f(»)=0forall yin W}.

The restriction homomorphism R(Y) — R(W), f — f|w, gives rise, for each
point y in W, to a ring epimorphism R(Y), — R(W),, whose kernel is
equal to the ideal Iy(W)R(Y), of R(Y),. In particular, the quotient ring
R(Y)y/Iy(WYR(Y), is isomorphic .to R(W),. Therefore if y in W is a
nonsingular point of ¥ and k = dimY —dim W, then given elements fi, ...,/
of Iy(W), the following conditions are equivalent:

i) IyW)YRX), = (fi,-.-,fiy R(Y), and y is a nonsingular point of W,

(i) y(WYRY)y = (fi,---,f)R(Y), and there exist elements fit1, ... ,fitd
of R(Y), d = dim W, such that fi, ..., fr+s generate the unique maximal
ideal of the local ring R(Y),,

(iii) the map (fi,...,fi): Y\ Sing(Y) — RF is trénsverse to 0 at y and
WNH = fl—l(O)ﬂ. : .ﬂfk—l(O)ﬂH , where H is a Zariski open neighborhood
of y in Y~ Sing(Y).

Indeed, the equivalence of (i) and (i1) is a consequence of [23, p. 169,
Proposition 1.10]. Furthermore, fi,...,fi+s generate the maximal ideal of
R(Y), if and only if there exists a neighborhood N of y in ¥\Sing(Y) such
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that the restriction of (fi,...,firq) to N is a local coordinate system for the
smooth manifold Y~ Sing(Y) [11, pp.66, 67]. Hence the equivalence of (i)
and (ii1) easily follows.

It also follows from [23, p.169, Proposition 1.10] that Iy(W)R(Y), is
generated by k elements, provided y in W is a nonsingular point of Y and
of W.

We shall freely use the facts just reviewed.

Proof of Theorem 1.5. By assumption, Dx(v) = [V]x, where V is a Zariski
closed subset of X with dimX —dimV = 2. If Vj,...,V, are the irreducible
components of V of dimension dimV, then [V]x = [Vi]x +--- +[V,]x, and
hence it suffices to prove the theorem assuming that V is irreducible.

Let xo be a nonsingular point of V. Then the ideal Ix(V)R(X),, of the
ring R(X),, can be generated by two elements; we choose generators a;,a;
that belong to Ix(V). Hence there exists a Zariski open neighborhood U of
Xo in X such that the ideal Ix(V)R(U) of the ring R(U) is generated by a;
and a,. This implies

(a) Ix(VYR(U), = (a1,a2)R(U), for all x in U .

Since Sing(V) is Zariski closed in V, shrinking U if necessary, we may
assume that U N Sing(V) = @. Hence from (a), we obtain

(b) the map (a,a,): U — R? is transverse to 0 in R>

at each point x in UN V.

Setting § = V~\(UNV), we have Sing(V) C S and, by virtue of irreducibility
of V,

(c) dim$S < dimV.

Let ¥ = X~\.§ and W = V\.S§. Then Y is a Zariski open subset of X and
W 1is a Zariski closed subset of Y, with dimY — dim W = 2.

CLAIM. There exist an algebraic vector bundle n = (E,m,Y) on Y and

an algebraic section s: Y — E of n such that n is of rank 2, W = s~1(0g),
and s is transverse to Og.

We prove the claim as follows. Choose a regular function b in R(Y) with
b=1(0) = W. Set by = ay|y for k=1,2, and define a map F:Y x R? - R?
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by
F(y,t) = F(y) = (1(y) + 1b(y)*, by(y) + t,b(y)%)

for all y in Y and ¢t = (t1,%,) in R>.

We assert that F is transverse to 0 in R?. Indeed, suppose F(y,f) = 0
for some (y,7) in ¥ x R?. If y is not in W, then the assertion holds since
it suffices to consider the partial derivatives with respect to #; and 7. If y
is in W, then (b) implies that F,: ¥ — R? is transverse to 0 in R? at y,
which means that the assertion also holds in this case. Hence the assertion is
proved.

It follows from the assertion and a standard transversality theorem [20,
p.79, Theorem 2.7] that there exists a point ¢ in R? for which the map

Fi=(fi,f): Y >R

is transverse to 0 in RZ. Since f; and f, are in Iy(W) and W is nonsingular,
we get
Ly(W)YR(Y)y = (J1,2RX)y

for all y in W. Hence for each point y in W, one can find a Zariski open
neighborhood G, of y in ¥ with

Iy(W)R(Gy) = (f1,2)R(Gy) .

In particular, W N G, = f{'(0) Nf, '(0) N G,. Taking G to be the union of
the G, for y in W, we get W =£;'(0)Nf, '(0) N G, which implies

(d) foyngs oy=wuw,

where W’ is a subset of Y disjoint from W. Clearly, W’ is contained
in YNG. Since WU W’ and Y~ G are Zariski closed subsets of Y, and
W = WUW)YNXT\G), it follows that W’ is also Zariski closed in Y. The
transversality of (fi,f2): ¥ — R? to 0 in R? together with (d)*imply

(e) Iy(W U W)R(Y), = (f1,/)R(Y), for all y in Y.

Choosing regular functions ; and %, in R(Y) with ¢ 10) = W and
(1 1(0) = W’ (this is possible since W and W’ are Zariski closed in Y), we
see that 117, belongs to Iy(W U W’) and hence

Y1y = hifi +haofo

for some regular functions #; and s, in R(Y) (the last assertion can easily
be deduced directly from (e), but, anyhow, it is also a consequence of (e) and
[23, p.93, Rule 1.1]).
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Let M,(R) denote the set of all real 2 x 2 matrices (identified with
R* and regarded as a real algebraic variety). Consider regular maps
g21: U =YW -—->MR) and g: U =Y\ W — M, (R) defined by

_ fia /1 —hy /3 - hy /5 ho /Y3 .
- hba/r Mt | . —fotbi /s fiv1 /12

For each point y in U; N U,, the matrices ¢i2(y) and g¢p;(y) are invertible
and g12(¥)g21(y) is the identity matrix. Define

E={0,v,n) e Y XR*xR*|v; = g0 if y € Uy
and v, = go1(y) vy if y € Uy}
and 7: E — Y, n(y,vi,v) = y. Since {U;,U,} is a Zariski open cover of
Y, it follows that E is a Zariski closed subset of ¥ x R? x R?. Clearly, 7 is

a regular map and, for each point y in Y, the fiber E, = 7~1(y) is a vector
subspace of {y} x R? x R?. Furthermore, the map

U x R = 771 (Up), 3,v) = @, 9 - v, gu®) - v)

is biregular for k = 1,2, where gu(y) is the identity matrix. Thus n = (E, w,Y)
1s an algebraic vector bundle of rank 2 on Y. The map s: ¥ — E

sO) = 0, (1), 0), (L)), L)1)

is an algebraic section of 1 with s~!(0z) = W. On U, the section s is
represented by (f1,/): Uy — R?, and therefore s is transverse to Oz. Hence
the claim is proved.

Let 5: (Y,Y~W) — (E,E~0g) be the map defined by s and let
2:Y — (Y, Y~ W) be the inclusion map. In view of (2.1), we have
wy(n) = £5(5*(1)), while (2.4) yields 5*(r,) = 1. It follows that

(f) wa(n) = £* (%) .

If i: (Y, VW)= X, X\V), j: X~ X,X\V), and e: Y — X are the
inclusion maps, then the diagram

HX(X,X\V) —" 5 HXY, Y~ W)

]

H*X) ——  HYY)

1S commutative.
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Since W C V~\ Sing(V), Proposition 2.8 yields
() fr) =1y, S =v.
By combining (d) and (e), we get
() wa(n) = £ (1) = € (7 (1)) = €"(v).

Proposition 2.10 implies that there exists an algebraic vector bundle ¢ on
X, whose restriction to Y is algebraically stably equivalent to n. In particular,
wy(n) = wy(C | Y) = e*(w2(¢)), and hence applying (h), we get

() e (v) = " (wa(Q)) .

Note that ¢* is injective. Indeed, there is an exact sequence
H2(X,Y) — HA(X) - HXY).

Since § = X\Y 1s Zariski closed in X, by Theorem 1.1 and Proposition 2.7,
H?*(X,Y) is isomorphic to H,_,(S), where n = dimX. Observing that
dimV = n—2 and applying (c), we obtain H,_,(S) = 0. Thus e* is injective
and (i) implies

(]) wz(C) =v.

The vector bundle (, being algebraic, has a constant rank on each
irreducible component of X. It follows that there exists an algebraic vector
bundle € on X such that the restriction of e to each irreducible component
of X is algebraically trivial and ( @ ¢ has constant rank, say, » on X. The
line bundle A = A"({ @ €) is algebraic [11, Proposition 12.1.8] and hence the
vector bundle £ = (PePB AP AP A is also algebraic. Since wi(A) = wi((Pe)
[21, p.246], we have w;(§) = 0 and, in view of (j), wa(§) = v. Thus the
proof is complete. [
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