

Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de l'Enseignement Mathématique
Band: 48 (2002)
Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: MM-SPACES AND GROUP ACTIONS
Autor: Pestov, Vladimir
Kapitel: 7. Concentration to a non-trivial space
DOI: <https://doi.org/10.5169/seals-66074>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 18.02.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

a universality property: it contains an isomorphic copy of every separable metric group [Usp]. See also [Gr3].

Using concentration of measure, one can prove that the group $\text{Iso}(\mathbf{U})$ is extremely amenable. The Ramsey–Dvoretzky–Milman property leads to the following Ramsey-type result:

Let F be a finite metric space, and let all isometric embeddings of F into \mathbf{U} be coloured using finitely many colours. Then for every finite metric space G and every $\varepsilon > 0$ there is an isometric copy $G' \subset \mathbf{U}$ of G such that all isometric embeddings of F into \mathbf{U} that factor through G are monochromatic to within ε .

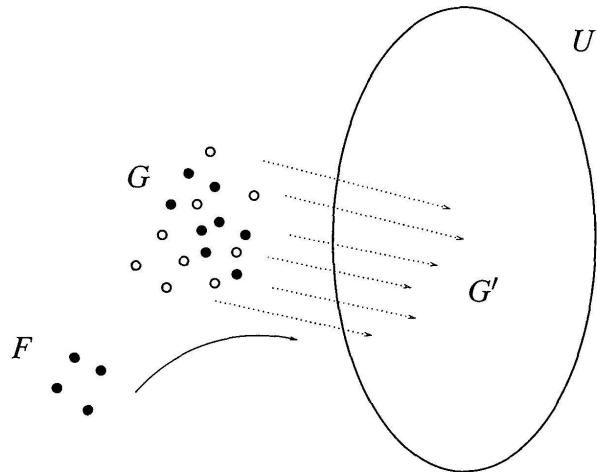


FIGURE 5

A Ramsey-type result for metric spaces

Here we say that a set A is *monochromatic to within ε* if there is a monochromatic set A' at a Hausdorff distance $< \varepsilon$ from A . In our case, the Hausdorff distance is formed with regard to the uniform metric on \mathbf{U}^F .

One can also obtain similar results, for example, for the separable Hilbert space ℓ_2 and for the unit sphere \mathbf{S}^∞ in ℓ_2 [P3].

7. CONCENTRATION TO A NON-TRIVIAL SPACE

Let f be a Borel measurable real-valued function on an mm -space $X = (X, d, \mu)$. A number $M = M_f$ is called a *median* (or *Lévy mean*) of f if both $f^{-1}[M, +\infty)$ and $f^{-1}(-\infty, M]$ have measure $\geq \frac{1}{2}$.

EXERCISE 13. Show that the median M_f always exists, though it need not be unique.

EXERCISE 14. Assume that a function f as above is 1-Lipschitz, that is, $|f(x) - f(y)| \leq d(x, y)$ for all $x, y \in X$. Prove that for every $\varepsilon > 0$,

$$\mu\{|f(x) - M_f| > \varepsilon\} \leq 2\alpha_X(\varepsilon).$$

Thus, one can express the phenomenon of concentration of measure by stating that on a ‘high-dimensional’ mm -space, every Lipschitz (more generally, uniformly continuous) function is, probabilistically, almost constant.

Following Gromov [Gr3, 3 1/2.45], let us recast the concentration phenomenon yet again.

On the space $L(0, 1)$ of all measurable functions define the metric me_1 , generating the topology of convergence in measure, by letting $me_1(h_1, h_2)$ stand for the infimum of all $\lambda > 0$ with the property

$$\mu^{(1)}\{|h_1(x) - h_2(x)| > \lambda\} < \lambda.$$

(Here $\mu^{(1)}$ denotes the Lebesgue measure on the unit interval $\mathbf{I} = [0, 1]$.)

Now let $X = (X, d_X, \mu_X)$ and $Y = (Y, d_Y, \mu_Y)$ be two Polish mm -spaces. There exist measurable maps $f: \mathbf{I} \rightarrow X$, $g: \mathbf{I} \rightarrow Y$ such that $\mu_X = f_* \mu^{(1)}$ and $\mu_Y = g_* \mu^{(1)}$. Denote by L_f the set of all functions of the form $h = h_1 \circ f$, where $h_1: X \rightarrow \mathbf{R}$ is 1-Lipschitz, having the property $h(0) = 0$. Similarly, define the set L_g . Now define a non-negative real number $\underline{H}_1 \mathcal{L}_1(X, Y)$ as the infimum of Hausdorff distances between L_f and L_g (formed using the metric me_1 on the space of functions), taken over all parametrizations f and g as above.

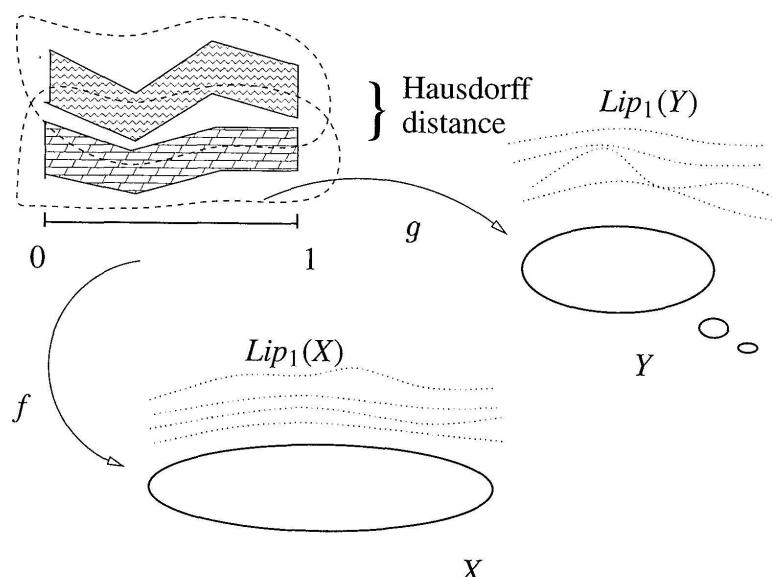


FIGURE 6
Gromov's distance $\underline{H}_1 \mathcal{L}_1$ between mm -spaces

EXERCISE 15. Prove that $\underline{H}_1\mathcal{L}_1$ is a metric on the space of (isomorphism classes of) all Polish mm -spaces.

EXERCISE 16. Prove that a sequence of mm -spaces $X_n = (X_n, d_n, \mu_n)$ forms a Lévy family if and only if it converges to the trivial mm -space in the metric $\underline{H}_1\mathcal{L}_1$:

$$X_n \xrightarrow{\underline{H}_1\mathcal{L}_1} \{*\}.$$

If one now replaces the trivial space on the right hand side with an arbitrary mm -space⁶), one obtains the concept of *concentration to a non-trivial space*.

According to Gromov, this type of concentration commonly occurs in statistical physics. At the same time, there are very few known non-trivial examples of this kind in the context of transformation groups.

Here is just one problem in this direction, suggested by Gromov. Every probability measure ν on a group G determines a random walk on G . How can one associate to (G, ν) in a natural way a sequence of mm -spaces which would concentrate to the boundary [Fur] of the random walk?

8. READING SUGGESTIONS

The 2001 Borel seminar was based on Chapter $3\frac{1}{2}$ of the green book [Gr3], which contains a wealth of ideas and concepts and can be complemented by [Gr4]. The survey [M3] by Vitali Milman, to whom we owe the present status of the concentration of measure phenomenon, is highly relevant and rich in material, especially if read in conjunction with a recent account of the subject by the same author [M4]. The book [M-S] is, in a sense, indispensable and should always be within one's reach. Talagrand's fundamental paper [Ta1] has to be at least browsed by every learner of the subject, while the paper [Ta2] of the same author offers an independent introduction to the subject of concentration of measure. The newly-published book by Ledoux [Led], apparently the first ever monograph devoted exclusively to concentration, is highly readable and covers a wide range of topics. Don't miss the introductory survey by Schechtman [Sch]. The modern setting for concentration was designed in the important paper [Gr-M1] by Gromov and Milman, which had also introduced the subject of this lecture and from which many results (perhaps with slight modifications) have been taken.

⁶) Or, more generally, a uniform space — for instance, a non-metrizable compact space — with measure.