Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	48 (2002)
Heft:	3-4: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	MM-SPACES AND GROUP ACTIONS
Autor:	Pestov, Vladimir
Kapitel:	6.4 Extreme amenability and minimal flows
DOI:	https://doi.org/10.5169/seals-66074

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 07.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

with finitely many sets on each of which the given function f has oscillation $< \varepsilon$, and apply Ramsey's theorem. Use Remark 11.]

6.4 EXTREME AMENABILITY AND MINIMAL FLOWS

COROLLARY 8. The group of orientation-preserving homeomorphisms of the closed unit interval, $Homeo_+(I)$, equipped with the compact-open topology, is extremely amenable.

Proof. Indeed, the extremely amenable group $Aut(\mathbf{Q})$ admits a continuous monomorphism with a dense image into the group $Homeo_+(\mathbf{I})$.

REMARK 12. Thompson's group F consists of all piecewise-linear homeomorphisms of the interval whose points of non-smoothness are finitely many dyadic rational numbers, and the slopes of any linear part are powers of 2. (See [CFP].) It is a major open question in combinatorial group theory whether the Thompson group is amenable. Since F is everywhere dense in Homeo₊(I), our Corollary 8 does not contradict the possible amenability of F.

Using the extreme amenability of the topological groups $Aut(\mathbf{Q})$ and $Homeo_+(\mathbf{I})$, one is able to compute explicitly the universal minimal flows of some larger topological groups as follows.

COROLLARY 9. The circle S^1 forms the universal minimal Homeo₊(S^1)-space.

Proof. Let $\theta \in \mathbf{S}^1$ be an arbitrary point. The isotropy subgroup St $_{\theta}$ of θ is isomorphic to Homeo₊(**I**). Because of that, whenever the topological group Homeo₊(\mathbf{S}^1) acts continuously on a compact space X, the subgroup St $_{\theta}$ has a fixed point, say $x' \in X$. The mapping Homeo₊(\mathbf{S}^1) $\ni h \mapsto h(x') \in X$ is constant on the left St $_{\theta}$ -cosets and therefore gives rise to a continuous equivariant map Homeo₊(\mathbf{S}^1)/ St $_{\theta} \cong \mathbf{S}^1 \to X$.

For the above results concerning groups $Aut(\mathbf{Q})$, $Homeo_+(\mathbf{I})$, and $Homeo_+(\mathbf{S}^1)$, see [P1].

Now denote by LO the set of all linear orders on \mathbb{Z} , equipped with the (compact) topology induced from $\{0,1\}^{\mathbb{Z}\times\mathbb{Z}}$. The group S_{∞} acts on LO by double permutations.

EXERCISE 11. Prove that the action of S_{∞} on LO is continuous and minimal (that is, the orbit of each linear order is everywhere dense in LO).

Recall that a linear order \prec is called *dense* if it has no gaps. A dense linear order without least and greatest elements is said to be of type η . The collection LO_{η} of all linear orders of type η on \mathbb{Z} can be identified with the factor space $S_{\infty}/\operatorname{Aut}(\prec)$ through the correspondence $\sigma \mapsto \sigma \prec$. Here \prec is some chosen linear order of type η on \mathbb{Z} and $\operatorname{Aut}(\prec)$ stands for the group of order-preserving self-bijections of (\mathbb{Z},\prec) , acting on the space of orders in a natural way: $(x \ \sigma \prec y) \Leftrightarrow \sigma^{-1}x \prec \sigma^{-1}y$.

EXERCISE 12. Show that under the above identification the uniform structure on LO_{η} , induced from the compact space LO, is the finest uniform structure making the quotient map $S_{\infty} \rightarrow S_{\infty}/Aut(\prec) \cong LO_{\eta}$ right uniformly continuous.

Let now X be a compact S_{∞} -space. The topological subgroup $\operatorname{Aut}(\prec)$ of S_{∞} has a fixed point in X, say x' (Exercise 10). The mapping $S_{\infty} \ni \sigma \mapsto \sigma(x') \in X$ is constant on the left $\operatorname{Aut}(\prec)$ -cosets and thus gives rise to a mapping $\varphi \colon \operatorname{LO}_{\eta} \to X$. Using Exercise 12, it is easy to see that φ is right uniformly continuous and thus extends to a morphism of S_{∞} -spaces $\operatorname{LO} \to X$. We have established the following result.

THEOREM 6 (Glasner and Weiss [Gl-W]). The compact space LO forms the universal minimal S_{∞} -space.

6.5 THE URYSOHN METRIC SPACE

The universal Urysohn metric space U [Ur] is determined uniquely (up to an isometry) by the following conditions:

- (i) U is a complete separable metric space;
- (ii) U is ω -homogeneous, that is, every isometry between two finite subspaces of U extends to an isometry of U;

(iii) U contains an isometric copy of every separable metric space.

A probabilistic description of this space was given by Vershik [Ver]: the completion of the space of integers equipped with a 'sufficiently random' metric is almost surely isometric to U.

The group of isometries Iso(U) with the compact-open topology is a Polish (complete metric separable) topological group, which also possesses