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230 V. PESTOV

with finitely many sets on each of which the given function / has oscillation

< e, and apply Ramsey's theorem. Use Remark 11.]

6.4 Extreme amenability and minimal flows

COROLLARY 8. The group of orientation-preserving homeomorphisms of
the closed unit interval, Homeo+(I), equipped with the compact-open topology,
is extremely amenable.

Proof Indeed, the extremely amenable group Aut(Q) admits a continuous

monomorphism with a dense image into the group Homeo+(I).

Remark 12. Thompson's group F consists of all piecewise-linear
homeomorphisms of the interval whose points of non-smoothness are finitely many
dyadic rational numbers, and the slopes of any linear part are powers of 2. (See

[CFP].) It is a major open question in combinatorial group theory whether the

Thompson group is amenable. Since F is everywhere dense in Homeo+(I),
our Corollary 8 does not contradict the possible amenability of F.

Using the extreme amenability of the topological groups Aut(Q) and

Homeo+(I), one is able to compute explicitly the universal minimal flows of
some larger topological groups as follows.

COROLLARY 9. The circle S1 forms the universal minimal Homeo+(S1)-

space.

Proof Let 6 G S1 be an arbitrary point. The isotropy subgroup St q of 0

is isomorphic to Homeo_}_(I). Because of that, whenever the topological group
Homeo^S1) acts continuously on a compact space X, the subgroup St q

has a fixed point, say x! G X. The mapping Homeo+(S1) 3 h ha h(xf) E X
is constant on the left St q -cosets and therefore gives rise to a continuous

equivariant map Homeo+CS1)/ St q S1 -A X.

For the above results concerning groups Aut(Q), Homeo+(I), and

Homeo+CS1), see [PI].

Now denote by LO the set of all linear orders on Z, equipped with the

(compact) topology induced from {0, l}ZxZ. The group acts on LO by
double permutations.



MM-SPACES AND GROUP ACTIONS 231

Exercise 11. Prove that the action of on LO is continuous and

minimal (that is, the orbit of each linear order is everywhere dense in LO).

Recall that a linear order -< is called dense if it has no gaps. A dense

linear order without least and greatest elements is said to be of type p. The

collection LO^ of all linear orders of type rj on Z can be identified with the

factor space Aut(^) through the correspondence cr 1—^ -<. Here -< is

some chosen linear order of type rj on Z and Aut(-<) stands for the group
of order-preserving self-bijections of (Z, -<), acting on the space of orders in
a natural way : (x y) <3 cr~lx -< cr_1y.

Exercise 12. Show that under the above identification the uniform
structure on LO^, induced from the compact space LO, is the finest uniform
structure making the quotient map -a S^/ Aut(-<) LO^ right uniformly
continuous.

Let now A be a compact -space. The topological subgroup Aut(-<) of
Soq has a fixed point in X, say x' (Exercise 10). The mapping Sqq 3 a \-3

cf(x') G X is constant on the left Aut(-<)-cosets and thus gives rise to a

mapping ip: LO^ =1 X. Using Exercise 12, it is easy to see that p is right
uniformly continuous and thus extends to a morphism of Sqo -spaces LO -3 X.
We have established the following result.

Theorem 6 (Glasner and Weiss [Gl-W]). The compact space LO forms
the universal minimal -space.

6.5 The Urysohn metric space

The universal Urysohn metric space U [Ur] is determined uniquely (up
to an isometry) by the following conditions :

(i) U is a complete separable metric space;

(ii) U is to -homogeneous, that is, every isometry between two finite
subspaces of U extends to an isometry of U ;

(iii) U contains an isometric copy of every separable metric space.

A probabilistic description of this space was given by Vershik [Ver] : the
completion of the space of integers equipped with a 'sufficiently random'
metric is almost surely isometric to U.

The group of isometries Iso(U) with the compact-open topology is a
Polish (complete metric separable) topological group, which also possesses
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