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DEFINITION 11 [Gr1]. Say that a G-space X (in our agreed sense) has the
Ramsey—Dvoretzky—Milman property if for every bounded uniformly continuous
function f from X to a finite-dimensional Euclidean space, every ¢ > 0, and
every finite F C X, there is a ¢ € G with the property '

Osc(f|gr) < €.

FIGURE 3

The Ramsey-Dvoretzky—Milman property

REMARK 9. Equivalently, F' can be assumed compact.

COROLLARY 7. For a topological group G the following are equivalent :

(1) G is extremely amenable,

(1) every metric space X upon which G acts continuously and transitively
by isometries has the R—-D-M property;

(iii) every homogeneous factor-space G/H, equipped with a left-invariant
metric (or the left uniform structure), has the R—D-M property.

Next, we will discover two very important situations where the R-D-M
property appears naturally.

6.2 DVORETZKY’S THEOREM

Here 1s the famous result.

THEOREM (Arieh Dvoretzky). For all € > 0 there is a constant ¢ =
ce) > O such that for any n-dimensional normed space (X, || -||;) there

is a subspace 'V of dimV > clogn and a Euclidean norm ||-||, with
x|l < x|l £ A +9)x||, for all x€ V.
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The studies of the phenomenon of concentration of measure were given a
boost by Vitali Milman’s new proof of the Dvoretzky theorem [M1], based
on a suitable finite-dimensional approximation to the lemma which follows
directly from results that we have previously stated:

LEMMA (Milman). The pair (U(H),S*°) has the R—-D—M property, where
S°° is the unit sphere of an infinite-dimensional Hilbert space H.

6.3 RAMSEY’S THEOREM

Let r be a positive natural number. By [r] one denotes the set {1,2,...,r}.
A colouring of a set X with r colours, or simply r-colouring, is any map
x: X — [r]. A subset A C X is monochromatic if for every a,b € A one has
x(a) = x(b).

Put otherwise, a finite colouring of a set X is nothing but a partition of
X into finitely many (disjoint) subsets.

Let X be a set, and let k be a natural number. Denote by [X]* the set

of all k-subsets of X, that is, all (unordered!) subsets containing exactly k
elements.

INFINITE RAMSEY THEOREM. Let X be an infinite set, and let k be a
natural number. For every finite colouring of [XI* there exists an infinite
subset A C X such that the set [A]F is monochromatic.

[X]?

——————

FIGURE 4

Ramsey theorem for k = 2
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