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EXAMPLE 11. Let 7w be a strongly continuous unitary representation of a
compact group G in ¢;. Then ¢, decomposes into the orthogonal direct sum
of finite-dimensional (irreducible) unitary G-modules, ¢, = @ -, V,. Set for
each n € N )

S, =S"NPV,.
i=1
We obtain a nested sequence of spheres of increasing finite dimension which
are invariant under the action of G. Let u, denote the rotation-invariant
probability measure on the sphere S,,. Denote also G, = G for all n. Then
(G,S°°) 1s a Lévy transformation group.

4. CONCENTRATION PROPERTY AND FIXED POINTS

The following definition is an attempt to capture ‘concentration in the
absence of measure’ (as indeed there are typically no invariant measures on
infinite dimensional spaces).

DEFINITION 7 [M2,M3]. Let a group G act on a metric space X by

uniform isomorphisms. Call a subset A C X essential if for every € > 0 and
every finite collection g;,...,gy € G one has

N
m giAs 7é a.
i=1

(Have another look at Fig. 1)

EXERCISE 5. The definition obtained by replacing ¢;A. with (giA)e 1s
equivalent.

Informally speaking, an essential set is so ‘big’ that translates of any
e-neighbourhood of it, taken in any finite number, don’t fit in without
overlapping.

DEFINITION 8 (ibidem). A G-space X has the concentration property if
every finite cover of X contains at least one essential set.

Perhaps one gets a better idea of the property if we start with an example
where it is violated.




218 . . V. PESTOV

EXAMPLE 12 (Imre Leader, 1988, unpublished). The U(#)-space S
(the unit sphere in H = £,) does not have the concentration property. Denote

by E the set of all even natural numbers, and let Pr be the corresponding
projection in #,. Set

A= {xeS®:||Psx| > \/_2—/2} :
B={xeS>: ||Pex| < v2/2}.

Clearly, AU B = S°°. At the same time, both A and B are inessential.
Indeed, let Ej, E;,E; be three arbitrary disjoint infinite subsets of N, and
let ¢;: N — N be bijections with @;(E) =E;, i = 1,2,3. Let g; denote the
unitary operator on ¢,(N) induced by ¢;. Now

giA) = {x € 8 ||Pgall > V2/2},

and consequently
GiAe C {x € 81 ||Prx| > (vV2/2) — ¢}
Thus, as long as € < v/2/2 —+/3/3, we have

3
(@A) =2.

i=1

The set B is treated similarly.

THEOREM 2. A compact G-space K has the concentration property if
and only if it contains a fixed point: g-x =k for all g € G.

Proof. (=) CLAM 1. There is a point x € K such that every neighbour-
hood of k is essential.

Assuming the contrary, we could have covered K with inessential open
sets and, selecting a finite open subcover, obtain a contradiction.

CLAIM 2. Any point K as above is G-fixed.

Again, assume that for some g € G, g-k # k. Set ¢ = d(k,g - K)/2.
Choose a number ¢ > 0 so small that § < ¢/2 and the g-translate of the open
ball Bs(x) is contained in the (¢/2)-ball around g - x. The set V = Bs(x) is
essential, yet the ¢-neighbourhoods of V and g-V don’t meet, a contradiction.

(<) Obvious. [

The following result provides nontrivial examples of G-spaces with the
concentration property.
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THEOREM 3. Every Lévy G-space (G,X) has the concentration property.

Proof. Let
Y= {Al,Az, . s ,Ak}
be a finite cover of X. Since for each n = 1,2,... the values u,(A),

i=1,2,...,k, add up to one, at least one of the sets in -, let us denote it
simply A = A;, has the property :
1
lim sup p,(A) > —.

n— 0o k

Now let € > 0 and a finite collection gj,j = 1,2,...,m be given. Using
Exercise 2, choose a number ny so large that

1
:un(Bs) > 1 - %

whenever n > ny and p,(B) > % Choose an n > ng with p,(A) > %; then
pn(giA) > & as well, and

1.
/J’n(g]A)a >1_I’I—’l’ I = 1,2,...,7’}1,

implying that the e-neighbourhoods of all the translates of A. by g;’s have
a common point. [

To extract useful information from the above, it only remains to link the
concentration property of a G-space to that of its compactification.

LEMMA 1. Let X and Y be two G-spaces®). Let i: X — Y be an
equivariant map. If (G, X) has the concentration property, then so does (G,Y).

Proof. If A C X is an essential subset, then so is i(4). Notice that the
uniform continuity of i is used here in a substantial way. [

The following is now immediate.

THEOREM 4 [Gr-M1]. Let (G,X) be a Lévy G-space and let K be a

compact G-space, such that there is an equivariant map X — K. Then K
has a G-fixed point. [

3) As before, X and Y are metric spaces upon which G acts continuously, by uniform
isomorphisms.




220 : V. PESTOV
Using Theorem 1 and Example 10, we obtain

COROLLARY 1. Whenever the topological group U({y)s acts continuously
on a compact space, it has a fixed point.

Such topological groups are said to have the fixed point on compacta
property, or else to be extremely amenable. And indeed, this property is
a drastically strengthened form of the usual amenability, which can be
reformulated as follows (Day): a topological group G is amenable if and
only if every affine continuous action of G on a convex compact set [in a
locally convex space] has a fixed point.

REMARK 5. No locally compact group can have the fixed point on
compacta property, this is a theorem by Veech ([Ve], Th. 2.2.1).

REMARK 6. The unitary group U(H); was the first ‘natural’ extremely
amenable group to be discovered. The second such discovery was the group
Lp((0,1), T) of all (equivalence classes of) measurable maps from the unit
interval to the circle rotation group, equipped with the topology of convergence
in measure. This was proved by Glasner (and published years later [Gl]) and,
independently, by Furstenberg and Weiss (never published). This group is a
Lévy group, and the approximating Lévy family of subgroups is formed by
tori T", made up of simple functions with respect to a refining sequence of
measurable partitions of (0, 1).

It 1s interesting that both groups mentioned in the previous paragraph appear
as the ‘outermost’ cases of a newly discovered class of extremely amenable
groups. Recall that a von Neumann algebra M 1is approximately finite-
dimensional if it contains a directed family of finite-dimensional *-subalgebras
with everywhere dense union. Denote by M, the predual of M. Tt is proved
in [G-P] that a von Neumann algebra M 1s approximately finite-dimensional
if and only if the unitary group of M, equipped with the topology o(M,M.,),
is the product of a compact group with an extremely amenable group.

The two cases to consider now are M = B(#), where the unitary group
with the above topology is U(H)s;, and M = L*°(0,1), in which case the
unitary group is Ly((0, 1), T).

As a corollary, nuclear C*-algebras admit a characterization in terms
of topological dynamics of their unitary groups. Recall that an action of a
group G on a compact space X 1s minimal if the G-orbit of every point
of X is everywhere dense, and equicontinuous if the family of all mappings
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x— gx, g € G of X to itself is uniformly equicontinuous. By considering
the enveloping von Neumann algebra, one can deduce that a C*-algebra A
is nuclear if and only if every minimal continuous action of the unitary
group U(A), equipped with the o(A,A*)-topology, on a compact space K is
equicontinuous.

REMARK 7. One has to be careful while applying Theorem 4. For instance,
consider the infinite permutation group S, formed by all self-bijections of a
countably infinite set, say Z. This group is equipped with the natural Polish
topology of pointwise convergence on discrete Z, induced by the embedding
Seo —+ ZZ . The idea of applying concentration in finite groups of permutations
(Example 3) to conclude that S, is a Lévy group is attractive, but does not
work.

EXERCISE 6. Let d be any right-invariant metric on S.,, generating the
topology of pointwise convergence. Show that S.,, acting on the left upon
(S, d), does not have the concentration property.

[Hint. Let T be the transposition exchanging 0 and 1 and leaving the rest
of Z fixed. Choose € > 0 so that the e-ball around e; is contained in the
intersection of the isotropy subgroups of O and 1. Now partition S, into
two sets A and B, where

A={0€Sp:0710) <o)}

and B = S, \A. Try to apply the concentration property to the cover {A, B},
the number ¢, and the collection of two elements e, 7.]

It follows that S, acts on some compact space without fixed points. (This
was noted in [P1].) Very recently such an action was constructed explicitely
by Eli Glasner and Benji Weiss [Gl-W]. We will return to their construction
later (Subsection 6.4).

One can even show that S, is not a Lévy group no matter what the group
topology 1s ([P2], Remark 4.9). However, it is still possible to put the finite
permutation groups (S,) together so as to obtain a Lévy group.

This is the group Aut(X,u) of all measure-preserving automorphisms of
the standard non-atomic Lebesgue space, (X, u), equipped with the weak
topology, that is, the weakest topology making every map of the form
Aut(X, u) 37— wWAAT(A)) € R continuous, where A C X is a measurable
set. This group contains finite permutation groups, realized as subgroups of
interval exchange transformations, and any right-invariant metric makes those
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subgroups into a Lévy family. A similar result holds for the group Aut*(X, u)
of all measure class preserving transformations (Thierry Giordano and the
author [G-P)).

5. INVARIANT MEANS ON SPHERES

Let a group G act on a metric space X by uniform isomorphisms. The
formula

Ifx) = flg~" - x)

determines an action of G on the space UCB(X) of all uniformly continuous
bounded complex valued functions on X by linear isometries. If G is a
topological group acting on X continuously, the above action of G on UCB(X)
need not, in general, be continuous. (An example: G = U(4y),, X = S°°))
However, the action will be continuous if X is compact. (An easy check.) To
some extent, the latter observation can be inverted.

EXERCISE 7. Let a topological group G act continuously on a commutative
unital C*-algebra A by automorphisms. Then this action determines a
continuous action of G on the space of maximal ideals of A, equipped
with the usual (weak™) topology.

Recall that a mean on a space F of functions is a positive linear functional,
m, of norm one, sending the function 1 to 1. A mean is multiplicative if F
is an algebra and the mean is a homomorphism of this algebra to C.

COROLLARY 2. Let (G,X) be a Lévy G-space. Then there exists a
G-invariant multiplicative mean on the space UCB(X) of all bounded
uniformly continuous functions on X.

Proof. According to Exercise 7, the group G acts continuously on the
space 9 of maximal ideals of the C*-algebra UCB(X). Therefore, 9 is
an equivariant compactification of X. By Theorem 4, there is a fixed point
© € M, which is the desired invariant multiplicative mean.  []

The following is deduced by considering Example 11.
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