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theory, cf. papers by Gromov [Grl], Milman [M2,M3], and some others
[A-M,GLP2,P3,G-P,GI-W]. However, it is safe to say that there is still a long
way to go towards the full understanding of the picture.

Here we aim at providing a readable introduction into this circle of ideas.

2. SOME CONCEPTS OF ASYMPTOTIC GEOMETRIC ANALYSIS

DEFINITION 1. A space with metric and measure, or an mm-space, is a
triple (X, d, i), where d is a metric on a set X and p is a finite Borel measure
on the metric space (X,d). It will be convenient to assume throughout that
14 1S a probability measure, that is, normalized to one.

DEFINITION 2. The concentration function oy of an mm-space X =

(X,d, ) 1s defined for non-negative real € as follows:
% if e =0,

ax(e) = : : v
1 —inf{{(A;): A C X is Borel, u(A) > 5} if € > 0.

Here A. denotes the e-neighbourhood (e-fattening, ¢-thickening) of A.

EXERCISE 1. Prove that a(e) — 0 as € — oo. (For spaces of finite
diameter this is of course obvious.)

DEFINITION 3. An infinite family of mm-spaces, (X, d,, pn)>2, is called

n=1-»
a Lévy family if the concentration functions «, of X, converge to zero
pointwise on (0, c0) :

Ve >0, a,(e) >0 as n— 0.

EXERCISE 2. Prove that the above condition is equivalent to the following.
Let A, C X, be Borel subsets with the property that

liminf n(A,) > 0.
n— oo

Then
Ve > 07 E}m Un((An)a) =1.

The following are some of the most common examples of Lévy families.
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EXAMPLE 1. Unit spheres S" in the Euclidean spaces R"!, equipped
with the Euclidean (or geodesic) distances and the normalized Haar measures
(that is, the unique rotation-invariant probability measures). This result is due
to Paul Lévy [Lév], though his proof, based on the isoperimetric inequality,
was only made rigorous much later by Gromov [Gr2]. (Nowadays simpler
proofs, using the Brunn—Minkowski inequality, are known, cf. [Gr-M2, Sch].)

EXAMPLE 2. The special orthogonal groups SO(n), equipped with the
normalized Haar measure and the uniform operator metric,

d(T,S) = ||T =S,

induced from B(R") = M, . This was established by Gromov and Milman
[Gr-M1]. The same argument holds for the special unitary groups.

EXAMPLE 3. The family of finite permutation groups (S,), equipped with
the uniform (normalized counting) measure and the Hamming distance :

1
d(o,7) = r_z|{l o(@) # ()} .

The result is due to Maurey [Ma], see also [Tal].

EXAMPLE 4. The Hamming cubes {0, 1}" equipped with the normalized

counting measure and the Hamming distance d(x,y) = %|{z x; 7 y;}| form a
Lévy family [Sch,M-S].

REMARK 1. All of the above are normal Lévy families, meaning that the
concentration functions ¢, admit Gaussian upper bounds :

an(e) < Cyexp(—Cone?)

for some C{,C, > 0.

It should be noted that this is not always the case for ‘naturally occurring’
Lévy families. For instance, the groups SL(2, F,), where p are prime numbers,
equipped with the normalized counting measure and the word metric given
by a fixed system of generators in SL(2,Z), form a Lévy family with

ay(e) < C exp(—Cay/pe), [A-M, M4]. (Recall in this connection that the
n-th prime number p, ~ nlogn.)
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REMARK 2. In Example 4, replace {0,1} with any probability measure
space, X = (X, ). Equip every finite power X" with the product measure
p®" and the normalized Hamming distance d(x,y) = 1|{i: x; # y;}|. Unless
X is purely atomic, the measures p®”" are not Borel, and thus X" aren’t even
mm-spaces in the sense of our definition. At the same time, if in the definition
of the concentration function we only restrict ourselves to measurable subsets
A such that A, are also measurable, it can be shown that X".,n € N form
a Lévy family in a very reasonable sense. (See [Tal,Ta3] for far-reaching
variations.) If anything, this shows that the full formalization of the subject
has not yet been achieved and nothing is cast in stone.

Notice that the mm-spaces from the above Examples 1-4 are at the same
time (phase spaces of) topological transformation groups, with both metrics
and measures being invariant under group actions. In Example 1 it is the
action of the orthogonal — or the unitary — group on the sphere, while in
Examples 2—4 the groups act upon themselves on the left.

3. A TRANSFORMATION GROUP FRAMEWORK

Here is the idea of what kind of interaction between concentration
phenomenon and group actions one should expect. The following example
is borrowed from a paper by Vitali Milman [M4].

Suppose a group G acts on an mm-space (X,d, ) by measure-preserving
1isometries. Assume that the mm-space X strongly concentrates, that is, the
function ax(e) drops off sharply already for small values of €. Let us assume,
for instance, that the concentration is so strong that, whenever pu(4) > 1,
the measure of the % -neighbourhood of A is strictly greater than 0.99.
(Cf. Exercise 2.) .

If now we partition X into seven pieces, and pick at random one hundred
elements gi, g2, --.,g100 € G, then at least one of the pieces, say A, has the
property that all one hundred translates, of T%—neighbourhoods of A by our
elements g; have a point, x*, in common. Equivalently, x* is ‘close’ (closer
than %) to each of the one hundred translates of A.

The above effect becomes more pronounced the higher the level of
concentration is. Partition a concentrated (‘high-dimensional’) mm-space into
a small number of subsets, and at least one of them is hard to move.

In order to set up a formal framework, we assume all topological spaces and
topological groups appearing in this article to be metrizable, for the reasons
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