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MM-SPACES AND GROUP ACTIONS

by Vladimir PESTOV

ABSTRACT. These are introductory notes on some aspects of concentration of
measure in the presence of an acting group and its links to Ramsey theory!).

1. INTRODUCTION

It can be argued that the theory we are interested in (call it theory of
mm-spaces, the phenomenon of concentration of measure on high-dimensional
structures, asymptotic geometric analysis, geometry of large dimensions, ...)
has been largely shaped up by three publications. These are : the book by Paul
Lévy [Lév], Vitali Milman’s new proof of the Dvoretzky theorem [M1], and
the paper by Gromov and Milman [Gr-M1] which had set up a framework for
. systematically dealing with concentration of measure: Significantly, in the two
latter papers concentration goes hand in hand with group actions on suitable
spaces with metric and measure. ‘

It 1s also known that concentration of measure and combinatorial, Ramsey-
type results have a similar nature and are often found together [M3].

A number of attempts have been made to understand the nature of
the interplay between concentration, transformation groups, and Ramsey

1) Based on a lecture given in the framework of Séminaire Borel de III° Cycle romand
de Mathématiques: “2001: an mm-space odyssey” (Espaces avec une métrique et une mesure,
d’apres M. Gromov) at the Institute of Mathematics, University of Berne, and a Séminaire du Liévre
talk at the Department of Mathematics, University of Geneva. The author gratefully acknowledges
generous support from the Swiss National Science Foundation during his visit in April-May 2001
and thanks Pierre de la Harpe for his hospitality and many stimulating conversations. While in
Switzerland, the author has also greatly benefitted from discussions with Gulnara Arzhantseva,
Anna Erschler, Thierry Giordano, Eli Glasner, Rostislav Grigorchuk, Volodymyr Nekrashevych,
Vitali Milman, and Tatiana Nagnibeda. Partial support also came from the Marsden Fund of the
Eoyal Society of New Zealand. Numerous remarks by the anonymous referee have been most

elpful.
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theory, cf. papers by Gromov [Grl], Milman [M2,M3], and some others
[A-M,GLP2,P3,G-P,GI-W]. However, it is safe to say that there is still a long
way to go towards the full understanding of the picture.

Here we aim at providing a readable introduction into this circle of ideas.

2. SOME CONCEPTS OF ASYMPTOTIC GEOMETRIC ANALYSIS

DEFINITION 1. A space with metric and measure, or an mm-space, is a
triple (X, d, i), where d is a metric on a set X and p is a finite Borel measure
on the metric space (X,d). It will be convenient to assume throughout that
14 1S a probability measure, that is, normalized to one.

DEFINITION 2. The concentration function oy of an mm-space X =

(X,d, ) 1s defined for non-negative real € as follows:
% if e =0,

ax(e) = : : v
1 —inf{{(A;): A C X is Borel, u(A) > 5} if € > 0.

Here A. denotes the e-neighbourhood (e-fattening, ¢-thickening) of A.

EXERCISE 1. Prove that a(e) — 0 as € — oo. (For spaces of finite
diameter this is of course obvious.)

DEFINITION 3. An infinite family of mm-spaces, (X, d,, pn)>2, is called

n=1-»
a Lévy family if the concentration functions «, of X, converge to zero
pointwise on (0, c0) :

Ve >0, a,(e) >0 as n— 0.

EXERCISE 2. Prove that the above condition is equivalent to the following.
Let A, C X, be Borel subsets with the property that

liminf n(A,) > 0.
n— oo

Then
Ve > 07 E}m Un((An)a) =1.

The following are some of the most common examples of Lévy families.
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EXAMPLE 1. Unit spheres S" in the Euclidean spaces R"!, equipped
with the Euclidean (or geodesic) distances and the normalized Haar measures
(that is, the unique rotation-invariant probability measures). This result is due
to Paul Lévy [Lév], though his proof, based on the isoperimetric inequality,
was only made rigorous much later by Gromov [Gr2]. (Nowadays simpler
proofs, using the Brunn—Minkowski inequality, are known, cf. [Gr-M2, Sch].)

EXAMPLE 2. The special orthogonal groups SO(n), equipped with the
normalized Haar measure and the uniform operator metric,

d(T,S) = ||T =S,

induced from B(R") = M, . This was established by Gromov and Milman
[Gr-M1]. The same argument holds for the special unitary groups.

EXAMPLE 3. The family of finite permutation groups (S,), equipped with
the uniform (normalized counting) measure and the Hamming distance :

1
d(o,7) = r_z|{l o(@) # ()} .

The result is due to Maurey [Ma], see also [Tal].

EXAMPLE 4. The Hamming cubes {0, 1}" equipped with the normalized

counting measure and the Hamming distance d(x,y) = %|{z x; 7 y;}| form a
Lévy family [Sch,M-S].

REMARK 1. All of the above are normal Lévy families, meaning that the
concentration functions ¢, admit Gaussian upper bounds :

an(e) < Cyexp(—Cone?)

for some C{,C, > 0.

It should be noted that this is not always the case for ‘naturally occurring’
Lévy families. For instance, the groups SL(2, F,), where p are prime numbers,
equipped with the normalized counting measure and the word metric given
by a fixed system of generators in SL(2,Z), form a Lévy family with

ay(e) < C exp(—Cay/pe), [A-M, M4]. (Recall in this connection that the
n-th prime number p, ~ nlogn.)
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REMARK 2. In Example 4, replace {0,1} with any probability measure
space, X = (X, ). Equip every finite power X" with the product measure
p®" and the normalized Hamming distance d(x,y) = 1|{i: x; # y;}|. Unless
X is purely atomic, the measures p®”" are not Borel, and thus X" aren’t even
mm-spaces in the sense of our definition. At the same time, if in the definition
of the concentration function we only restrict ourselves to measurable subsets
A such that A, are also measurable, it can be shown that X".,n € N form
a Lévy family in a very reasonable sense. (See [Tal,Ta3] for far-reaching
variations.) If anything, this shows that the full formalization of the subject
has not yet been achieved and nothing is cast in stone.

Notice that the mm-spaces from the above Examples 1-4 are at the same
time (phase spaces of) topological transformation groups, with both metrics
and measures being invariant under group actions. In Example 1 it is the
action of the orthogonal — or the unitary — group on the sphere, while in
Examples 2—4 the groups act upon themselves on the left.

3. A TRANSFORMATION GROUP FRAMEWORK

Here is the idea of what kind of interaction between concentration
phenomenon and group actions one should expect. The following example
is borrowed from a paper by Vitali Milman [M4].

Suppose a group G acts on an mm-space (X,d, ) by measure-preserving
1isometries. Assume that the mm-space X strongly concentrates, that is, the
function ax(e) drops off sharply already for small values of €. Let us assume,
for instance, that the concentration is so strong that, whenever pu(4) > 1,
the measure of the % -neighbourhood of A is strictly greater than 0.99.
(Cf. Exercise 2.) .

If now we partition X into seven pieces, and pick at random one hundred
elements gi, g2, --.,g100 € G, then at least one of the pieces, say A, has the
property that all one hundred translates, of T%—neighbourhoods of A by our
elements g; have a point, x*, in common. Equivalently, x* is ‘close’ (closer
than %) to each of the one hundred translates of A.

The above effect becomes more pronounced the higher the level of
concentration is. Partition a concentrated (‘high-dimensional’) mm-space into
a small number of subsets, and at least one of them is hard to move.

In order to set up a formal framework, we assume all topological spaces and
topological groups appearing in this article to be metrizable, for the reasons
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FIGURE 1

Dynamics in the presence of concentration

of mere technical simplicity?). We need G-spaces of a particular kind. Let
X = (X, d) be a metric space, not necessarily compact, and let a group G act
on X (on the left) by uniformly continuous maps. In other words, there is a
map Gx X — X, (g,x) = g-x, such that g- (h-x) = (gh)-x, e-x=x, and
every map of the form

Xo3x—g-xeX

(a translation by g¢) is uniformly continuous. (Then it is automatically a uniform
isomorphism.) If, moreover, G is a topological group, then we require the
action G X X — X to be continuous.

EXAMPLE 5. The motivation for our choice of the class of G-spaces is
provided by the fact that every (metrizable) compact G-space, K, is such: a
translation of K by an element. g € G, being a continuous map on a compact
space, is uniformly continuous.

Here is another property that compact G-spaces possess automatically,
while G-spaces of a more general nature do not.

EXERCISE 3. Let a topological group G act continuously on a (metrizable)
compact space K = (K, d). Prove that for every £ > 0 there is a neighbourhood
of identity V > e with the property that whenever g € V and x € K, one
has d(x,g-x) < . [In abstract topological dynamics .such actions are termed
bounded, or else motion equicontinuous.]

[Hint. Using the continuity of the action G x K =% K-, choose for each
x € K a neighbourhood U, of x in K and a neighbourhood, V,, of ez in

2) More generally, metrics can be replaced with uniform-structures: - -- - -
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G, such that V, - U, C B.(x) (the open d-ball around x); now select a finite
subcover of {U,},...]

EXAMPLE 6. Every metrizable group admits a right-invariant compatible
metric (d(x,y) = d(xa, ya)), as well as a left-invariant one (d(x,y) = d(ax, ay)).
The action of G on itself by left translations is an action by isometries
with respect to a left-invariant metric, and (exercise) an action by uniform
1somorphisms with respect to a right-invariant metric.

EXERCISE 4. Show that the action of a topological group G upon itself,
equipped with a right invariant metric, by left translations, is bounded.

EXAMPLE 7. One topological group of interest to us is U(H),, the full
unitary group of a separable Hilbert space with the strong operator topology.
(That is, the topology induced from the Tychonoff product H*.) A standard
neighbourhood of identity in this topology consists of all 7€ U(H) such that
|T(x;) — xi|]| <e for i=1,2,...,n, where xi,...,x, is a finite collection of
unit vectors in . This topology on U(H) coincides with the weak operator
topology, that is, the weakest topology making continuous every map of the
form

UH)D T (x,Tx) € C, x € H.

EXAMPLE 8. Let m be a unitary representation of a group G (viewed as
discrete) in a Hilbert space # . Denote by S the unit sphere in H, equipped
with the norm distance. Then G acts on S* by isometries: (g,x) — myx.

REMARK 3. The above G-space is bounded for trivial reasons. It should
be noted, however, that in general one does not expect a ‘typical’ G-space to
be bounded at all.

DEFINITION 4. Let a topological group G act continuously, by uniform
isomorphisms, on two metric spaces, X and Y. A morphism, or an equivariant
map, from X to Y is a uniformly continuous map i: X — Y which commutes
with the action:

i(g-x) = g-ix).
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DEFINITION 5. Let a topological group G act continuously on a metric
space (X,d) by uniformly continuous maps, and let also G act continuously
on a compact space K. Let i: X — K be a morphism of G-spaces with
an everywhere dense image in K. The pair (K,i) is called an equivariant
compactification of X.

EXAMPLE 9. Let G and H be as in Example 8. The unit ball B in
H equipped with the weak topology is compact, and G acts on B in the
same way as on the sphere. The embedding S*° < B is an equivariant
compactification.

The following is at the heart of abstract topological dynamics.

THEOREM 1. Let G be a topological group, and let d be a right-invariant
metric generating the topology of G. Let K be a (metric) compact G-space,
and let k € K be arbitrary. There is a morphism of G-spaces i: (G,d) — K
such that i(e) = k.

Proof. Define the map i: G — K (an orbit map) by
i:G3y—y-keK.

This map i1s equivariant. [i(g-y) =(gy)-k = g-(y-k) = g-i(y).] It only remains
to check the uniform continuity of i. Choose any continuous metric on K,
say p. Using Exercise 3, find a 6 > 0 with the property that p(x,g-x) < e
whenever x € K and d(g,eg) < d. If now g,h € G are such that d(g,h) < 6,
then d(gh™',eg) < & and consequently

phr, gk) = p(hr, gh™ '(he)) <e. [

REMARK 4. The difference between the right and left invariant metrics
(or, more generally, uniform structures) on a topological group cannot be
overemphasized. Even if they are totally symmetric, they cease to be such as
soon as we choose the action (in our case, by left translations).

Here is a key notion putting the concentration of measure in a dynamical
context.
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DEFINITION 6. Let a metrizable topological group G act continuously by
uniform isomorphisms on a metric space X = (X,d). Say that the G-space
(transformation group) (G, X) is Lévy (Gromov and Milman [Gr-M1]) if there
are a sequence of subgroups of G

G1CGC---CG, C---CG,
and a sequence of probability measures

K1y 25 -5 Mony v - -
on (X,d), such that

(1) UG, is everywhere dense in G,
(1) u, are G,-invariant,

(1) (X, d, p,) form a Lévy family.

FIGURE 2

A Lévy transformation group

In the particular case where X is the group itself equipped with a right-
invariant metric and the action of G is by left translations, we say that G is
a Lévy group.

EXAMPLE 10. Let H =4, and let G = UH),, X = (G,d), where d is
a right-invariant metric and the action is by left translations. Set G, = SU(n)
(embedded into U(H) as a subgroup of block-diagonal operators), and let
1, denote the normalized Haar measure on SU(n). One can view u, as a
measure on all of U(¢,); with support SU(n). The mm-spaces (U(H)s,d, in)

clearly form a Lévy family, because the spaces (SU(n)s,d|suwmy, n) do. We -

conclude: U(H); 1s a Lévy group.
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EXAMPLE 11. Let 7w be a strongly continuous unitary representation of a
compact group G in ¢;. Then ¢, decomposes into the orthogonal direct sum
of finite-dimensional (irreducible) unitary G-modules, ¢, = @ -, V,. Set for
each n € N )

S, =S"NPV,.
i=1
We obtain a nested sequence of spheres of increasing finite dimension which
are invariant under the action of G. Let u, denote the rotation-invariant
probability measure on the sphere S,,. Denote also G, = G for all n. Then
(G,S°°) 1s a Lévy transformation group.

4. CONCENTRATION PROPERTY AND FIXED POINTS

The following definition is an attempt to capture ‘concentration in the
absence of measure’ (as indeed there are typically no invariant measures on
infinite dimensional spaces).

DEFINITION 7 [M2,M3]. Let a group G act on a metric space X by

uniform isomorphisms. Call a subset A C X essential if for every € > 0 and
every finite collection g;,...,gy € G one has

N
m giAs 7é a.
i=1

(Have another look at Fig. 1)

EXERCISE 5. The definition obtained by replacing ¢;A. with (giA)e 1s
equivalent.

Informally speaking, an essential set is so ‘big’ that translates of any
e-neighbourhood of it, taken in any finite number, don’t fit in without
overlapping.

DEFINITION 8 (ibidem). A G-space X has the concentration property if
every finite cover of X contains at least one essential set.

Perhaps one gets a better idea of the property if we start with an example
where it is violated.
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EXAMPLE 12 (Imre Leader, 1988, unpublished). The U(#)-space S
(the unit sphere in H = £,) does not have the concentration property. Denote

by E the set of all even natural numbers, and let Pr be the corresponding
projection in #,. Set

A= {xeS®:||Psx| > \/_2—/2} :
B={xeS>: ||Pex| < v2/2}.

Clearly, AU B = S°°. At the same time, both A and B are inessential.
Indeed, let Ej, E;,E; be three arbitrary disjoint infinite subsets of N, and
let ¢;: N — N be bijections with @;(E) =E;, i = 1,2,3. Let g; denote the
unitary operator on ¢,(N) induced by ¢;. Now

giA) = {x € 8 ||Pgall > V2/2},

and consequently
GiAe C {x € 81 ||Prx| > (vV2/2) — ¢}
Thus, as long as € < v/2/2 —+/3/3, we have

3
(@A) =2.

i=1

The set B is treated similarly.

THEOREM 2. A compact G-space K has the concentration property if
and only if it contains a fixed point: g-x =k for all g € G.

Proof. (=) CLAM 1. There is a point x € K such that every neighbour-
hood of k is essential.

Assuming the contrary, we could have covered K with inessential open
sets and, selecting a finite open subcover, obtain a contradiction.

CLAIM 2. Any point K as above is G-fixed.

Again, assume that for some g € G, g-k # k. Set ¢ = d(k,g - K)/2.
Choose a number ¢ > 0 so small that § < ¢/2 and the g-translate of the open
ball Bs(x) is contained in the (¢/2)-ball around g - x. The set V = Bs(x) is
essential, yet the ¢-neighbourhoods of V and g-V don’t meet, a contradiction.

(<) Obvious. [

The following result provides nontrivial examples of G-spaces with the
concentration property.
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THEOREM 3. Every Lévy G-space (G,X) has the concentration property.

Proof. Let
Y= {Al,Az, . s ,Ak}
be a finite cover of X. Since for each n = 1,2,... the values u,(A),

i=1,2,...,k, add up to one, at least one of the sets in -, let us denote it
simply A = A;, has the property :
1
lim sup p,(A) > —.

n— 0o k

Now let € > 0 and a finite collection gj,j = 1,2,...,m be given. Using
Exercise 2, choose a number ny so large that

1
:un(Bs) > 1 - %

whenever n > ny and p,(B) > % Choose an n > ng with p,(A) > %; then
pn(giA) > & as well, and

1.
/J’n(g]A)a >1_I’I—’l’ I = 1,2,...,7’}1,

implying that the e-neighbourhoods of all the translates of A. by g;’s have
a common point. [

To extract useful information from the above, it only remains to link the
concentration property of a G-space to that of its compactification.

LEMMA 1. Let X and Y be two G-spaces®). Let i: X — Y be an
equivariant map. If (G, X) has the concentration property, then so does (G,Y).

Proof. If A C X is an essential subset, then so is i(4). Notice that the
uniform continuity of i is used here in a substantial way. [

The following is now immediate.

THEOREM 4 [Gr-M1]. Let (G,X) be a Lévy G-space and let K be a

compact G-space, such that there is an equivariant map X — K. Then K
has a G-fixed point. [

3) As before, X and Y are metric spaces upon which G acts continuously, by uniform
isomorphisms.
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Using Theorem 1 and Example 10, we obtain

COROLLARY 1. Whenever the topological group U({y)s acts continuously
on a compact space, it has a fixed point.

Such topological groups are said to have the fixed point on compacta
property, or else to be extremely amenable. And indeed, this property is
a drastically strengthened form of the usual amenability, which can be
reformulated as follows (Day): a topological group G is amenable if and
only if every affine continuous action of G on a convex compact set [in a
locally convex space] has a fixed point.

REMARK 5. No locally compact group can have the fixed point on
compacta property, this is a theorem by Veech ([Ve], Th. 2.2.1).

REMARK 6. The unitary group U(H); was the first ‘natural’ extremely
amenable group to be discovered. The second such discovery was the group
Lp((0,1), T) of all (equivalence classes of) measurable maps from the unit
interval to the circle rotation group, equipped with the topology of convergence
in measure. This was proved by Glasner (and published years later [Gl]) and,
independently, by Furstenberg and Weiss (never published). This group is a
Lévy group, and the approximating Lévy family of subgroups is formed by
tori T", made up of simple functions with respect to a refining sequence of
measurable partitions of (0, 1).

It 1s interesting that both groups mentioned in the previous paragraph appear
as the ‘outermost’ cases of a newly discovered class of extremely amenable
groups. Recall that a von Neumann algebra M 1is approximately finite-
dimensional if it contains a directed family of finite-dimensional *-subalgebras
with everywhere dense union. Denote by M, the predual of M. Tt is proved
in [G-P] that a von Neumann algebra M 1s approximately finite-dimensional
if and only if the unitary group of M, equipped with the topology o(M,M.,),
is the product of a compact group with an extremely amenable group.

The two cases to consider now are M = B(#), where the unitary group
with the above topology is U(H)s;, and M = L*°(0,1), in which case the
unitary group is Ly((0, 1), T).

As a corollary, nuclear C*-algebras admit a characterization in terms
of topological dynamics of their unitary groups. Recall that an action of a
group G on a compact space X 1s minimal if the G-orbit of every point
of X is everywhere dense, and equicontinuous if the family of all mappings
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x— gx, g € G of X to itself is uniformly equicontinuous. By considering
the enveloping von Neumann algebra, one can deduce that a C*-algebra A
is nuclear if and only if every minimal continuous action of the unitary
group U(A), equipped with the o(A,A*)-topology, on a compact space K is
equicontinuous.

REMARK 7. One has to be careful while applying Theorem 4. For instance,
consider the infinite permutation group S, formed by all self-bijections of a
countably infinite set, say Z. This group is equipped with the natural Polish
topology of pointwise convergence on discrete Z, induced by the embedding
Seo —+ ZZ . The idea of applying concentration in finite groups of permutations
(Example 3) to conclude that S, is a Lévy group is attractive, but does not
work.

EXERCISE 6. Let d be any right-invariant metric on S.,, generating the
topology of pointwise convergence. Show that S.,, acting on the left upon
(S, d), does not have the concentration property.

[Hint. Let T be the transposition exchanging 0 and 1 and leaving the rest
of Z fixed. Choose € > 0 so that the e-ball around e; is contained in the
intersection of the isotropy subgroups of O and 1. Now partition S, into
two sets A and B, where

A={0€Sp:0710) <o)}

and B = S, \A. Try to apply the concentration property to the cover {A, B},
the number ¢, and the collection of two elements e, 7.]

It follows that S, acts on some compact space without fixed points. (This
was noted in [P1].) Very recently such an action was constructed explicitely
by Eli Glasner and Benji Weiss [Gl-W]. We will return to their construction
later (Subsection 6.4).

One can even show that S, is not a Lévy group no matter what the group
topology 1s ([P2], Remark 4.9). However, it is still possible to put the finite
permutation groups (S,) together so as to obtain a Lévy group.

This is the group Aut(X,u) of all measure-preserving automorphisms of
the standard non-atomic Lebesgue space, (X, u), equipped with the weak
topology, that is, the weakest topology making every map of the form
Aut(X, u) 37— wWAAT(A)) € R continuous, where A C X is a measurable
set. This group contains finite permutation groups, realized as subgroups of
interval exchange transformations, and any right-invariant metric makes those
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subgroups into a Lévy family. A similar result holds for the group Aut*(X, u)
of all measure class preserving transformations (Thierry Giordano and the
author [G-P)).

5. INVARIANT MEANS ON SPHERES

Let a group G act on a metric space X by uniform isomorphisms. The
formula

Ifx) = flg~" - x)

determines an action of G on the space UCB(X) of all uniformly continuous
bounded complex valued functions on X by linear isometries. If G is a
topological group acting on X continuously, the above action of G on UCB(X)
need not, in general, be continuous. (An example: G = U(4y),, X = S°°))
However, the action will be continuous if X is compact. (An easy check.) To
some extent, the latter observation can be inverted.

EXERCISE 7. Let a topological group G act continuously on a commutative
unital C*-algebra A by automorphisms. Then this action determines a
continuous action of G on the space of maximal ideals of A, equipped
with the usual (weak™) topology.

Recall that a mean on a space F of functions is a positive linear functional,
m, of norm one, sending the function 1 to 1. A mean is multiplicative if F
is an algebra and the mean is a homomorphism of this algebra to C.

COROLLARY 2. Let (G,X) be a Lévy G-space. Then there exists a
G-invariant multiplicative mean on the space UCB(X) of all bounded
uniformly continuous functions on X.

Proof. According to Exercise 7, the group G acts continuously on the
space 9 of maximal ideals of the C*-algebra UCB(X). Therefore, 9 is
an equivariant compactification of X. By Theorem 4, there is a fixed point
© € M, which is the desired invariant multiplicative mean.  []

The following is deduced by considering Example 11.
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COROLLARY 3 [Gr-M1]1. If a compact group G is represented by unitary
operators in an infinite-dimensional Hilbert space H, then there exists a
G -invariant multiplicative mean on the uniformly continuous bounded functions
on the unit sphere of H.

REMARK 8. The infinite-dimensionality of 7 is essential. Since the
unit sphere S of a finite-dimensional space # is compact, an invariant
multiplicative mean on UCB(S) exists if and only if there is a fixed vector
£es.

Means on UCB(X), where X = S* is the unit sphere in the Hilbert space,
as well as some other infinite-dimensional manifolds, were studied by Paul
Lévy, who viewed them as (substitutes for) infinite-dimensional integrals*).
The 1nvariant means can thus serve as a substitute for invariant integration on
the infinite-dimensional spheres. One can substantially generalize Corollary 3.
With this purpose in view, it is convenient to enlarge the concept of a Lévy
transformation group.

If 11, p are probability measures on the same metric space X, then the
transportation distance between them is defined as

Bl fig) = InF / d(x,y) dv(x,y).,

XxX

where the infimum is taken over all probability measures v on the product
space X X X such that (m).v = y; for i = 1,2 and 7, m: X x X — X
denote the coordinate projections.

The way to think of the transportation distance is to identify each probability
measure with a pile of sand, then d,,4,(1t1, 112) is the minimal average distance
that each grain of sand has to travel when the first pile is being moved to
take the place of the second?).

Let us from now on replace Definition 6 with the following, more general
one.

*) The multiplicativity of some of those means, which is not exactly a property one expects
of an integral, becomes clear if one recalls an equivalent way to express the concentration
phenomenon: on a high-dimensional structure, every 1-Lipschitz function is, probabilistically,
almost constant, cf. Section 7.

) In computer science, the transportation distance is known as the Earth Mover’s Distance
(EMD).
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DEFINITION 9. Say that a G-space (G,X) is Lévy if there is a net of
probability measures (u,) on X, such that the mm-spaces (X,d, o) form a
Lévy family and for each g € G,

Airan(fas Glha) — 0.

Theorems 3 and 4 remain true, with very minor modifications of the proofs.

Here is one application. A unitary representation m of a group G in
a Hilbert space H is amenable in the sense of Bekka [Be] if there exists
a state, ¢, on the algebra B(#H) of all bounded operators on the space
H of representation, which is invariant under the action of G by inner
automorphisms : @(mTmy) = @(T) for every T € B(H) and every g € G.

THEOREM 5 [P2]. Let w be a unitary representation of a group G in a
Hilbert space H. The following are equivalent.

(1) m is amenable.

(ii) Either m has a finite-dimensional subrepresentation, or (G,S) has the
concentration property (or both).

(i) There is a G-invariant mean on the space UCB(S) (a ‘Lévy-type
integral’).

Proof. (i) = (ii): according to Th. 6.2 and Remark 1.2.(iv) in [Be], a
representation 7 is amenable if and only if for every finite set g, g2,. .., gk

of elements of G and every € > 0 there is a projection P of finite rank such
that for all i =1,2,...,k

HP_ngPW <ellPlly,

il
where ||-||; denotes the trace class operator norm. It follows that the
transportation distance between the Haar measure on the unit sphere in the
range of the projection P and the translates of this measure by operators
can be made as small as desired via a suitable choice of P. Now a variant
of Theorem 4 applies. (See [P2] for details.)

(i) = (iii): in the first case, the mean is obtained by invariant integration
on the finite-dimensional sphere, while in the second case even a multiplicative
mean exists.

(iii) = (i): let ¥ be a G-invariant mean on UCB(Sy). For every bounded
linear operator 7 on H define a (Lipschitz) function fr: Sy — C by

Sy 3 & fr(€) == (T¢,£) € C,
and set (1) := 9(fr). This ¢ is a G-invariant mean on B(H). [
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COROLLARY 4. A locally compact group G is amenable if and only if for
every strongly continuous unitary representation of G in an infinite-dimensional
Hilbert space the pair (G,S°°) has the property of concentration.

COROLLARY 5. There is no invariant mean on UCB(S®) for the full
unitary group U({y).

Proof. If such a mean existed, then every unitary representation of every
group would be amenable, in particular every group would be amenable (by
Th. 2.2 in [Be]).

(Of course Corollary 5 also follows from Imre Leader’s Example 12 modulo
Theorem 2 and Lemma 1.)

A (not necessarily locally compact) topological group G is amenable if
there is a left-invariant mean on the space RUCB(G) of all right uniformly
continuous bounded functions on G. Denote by U(¢;), the full unitary group
with the uniform operator topology.

COROLLARY 6 (Pierre de la Harpe [dIH], proved by different means). The
topological group U({,), is not amenable.

Proof. Choose an arbitrary ¢ € S°°. To every function 3 € UCB(S*)
associate the function ) as follows:

G2y id(g) =) € C.

The correspondence ¢ +— zz 1S a G-equivariant positive bounded unit-
preserving linear operator from UCB(S*°) to RUCB(U(4,),), and any left-
invariant mean ¢ on the latter G-module would thus determine a G-invariant
mean on the former G-module, contradicting Corollary 5.  []

EXAMPLE 13. In a similar fashion, by considering the action of Aut(X, 1)
on L%(X , 1), where X = SL(3,R)/SL(3,Z), one deduces that Aut(X, 1), with
the uniform topology is not amenable [G-P].

%
|
E
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6. RAMSEY-DVORETZKY-MILMAN PROPERTY

6.1 EXTREME AMENABILITY AND SMALL OSCILLATIONS

One way to intuitively describe a ‘Ramsey-type result’ is as follows.
Suppose X is a large (and often highly homogeneous) structure of some
sort or other. Let X be partitioned into a finite number of pieces in an
arbitrary way. No matter how irregular and ‘ragged’ the pieces are, at least
one of them always contains the remnants of the original structure, that is,
a (possibly much smaller, but still detectable) substructure of the same type
which survived intact.

We are now going to link explicitly the fixed point on compacta property
to Ramsey-type results. Here is the first step.

EXERCISE 8. Prove that a topological group G is extremely amenable
if and only if for every finite collection gi,...,g, of elements of G, every
bounded right uniformly continuous function f: G — RY from G to a finite-
dimensional Euclidean space, and every € > O there is an & € G such that
| f(h) — f(g:h)| < e for each i=1,2,...,n.

[Hints. (=) The action of G on the space S(G) of maximal ideals of
the C*-algebra RUCB(G) is continuous, and G itself can be thought of as
an everywhere dense subset of S(G).

(<) Form a net of suitably indexed elements & as above and consider any
limit point of the net A, - £, where & is an arbitrary element of the compact
space upon which G acts continuously.]

EXERCISE 9. Prove that the above condition for extreme amenability is, in
turn, equivalent to the following. For every bounded left uniformly continuous
function f from G to a finite-dimensional Euclidean space, every finite subset
F of G, and every € > 0, the oscillation of f on a suitable left translate of
F is less than ¢ :

dg € G, Osc(flyr) < €.

It is convenient to deal with the above property in a more general context
of G-spaces.
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DEFINITION 11 [Gr1]. Say that a G-space X (in our agreed sense) has the
Ramsey—Dvoretzky—Milman property if for every bounded uniformly continuous
function f from X to a finite-dimensional Euclidean space, every ¢ > 0, and
every finite F C X, there is a ¢ € G with the property '

Osc(f|gr) < €.

FIGURE 3

The Ramsey-Dvoretzky—Milman property

REMARK 9. Equivalently, F' can be assumed compact.

COROLLARY 7. For a topological group G the following are equivalent :

(1) G is extremely amenable,

(1) every metric space X upon which G acts continuously and transitively
by isometries has the R—-D-M property;

(iii) every homogeneous factor-space G/H, equipped with a left-invariant
metric (or the left uniform structure), has the R—D-M property.

Next, we will discover two very important situations where the R-D-M
property appears naturally.

6.2 DVORETZKY’S THEOREM

Here 1s the famous result.

THEOREM (Arieh Dvoretzky). For all € > 0 there is a constant ¢ =
ce) > O such that for any n-dimensional normed space (X, || -||;) there

is a subspace 'V of dimV > clogn and a Euclidean norm ||-||, with
x|l < x|l £ A +9)x||, for all x€ V.
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The studies of the phenomenon of concentration of measure were given a
boost by Vitali Milman’s new proof of the Dvoretzky theorem [M1], based
on a suitable finite-dimensional approximation to the lemma which follows
directly from results that we have previously stated:

LEMMA (Milman). The pair (U(H),S*°) has the R—-D—M property, where
S°° is the unit sphere of an infinite-dimensional Hilbert space H.

6.3 RAMSEY’S THEOREM

Let r be a positive natural number. By [r] one denotes the set {1,2,...,r}.
A colouring of a set X with r colours, or simply r-colouring, is any map
x: X — [r]. A subset A C X is monochromatic if for every a,b € A one has
x(a) = x(b).

Put otherwise, a finite colouring of a set X is nothing but a partition of
X into finitely many (disjoint) subsets.

Let X be a set, and let k be a natural number. Denote by [X]* the set

of all k-subsets of X, that is, all (unordered!) subsets containing exactly k
elements.

INFINITE RAMSEY THEOREM. Let X be an infinite set, and let k be a
natural number. For every finite colouring of [XI* there exists an infinite
subset A C X such that the set [A]F is monochromatic.

[X]?

——————

FIGURE 4

Ramsey theorem for k = 2
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REMARK 10. For k = 1 the statement is simply the pigeonhole principle.
Here is a popular interpretation of the result in the case k = 2. Among
infinitely many people, either there is an infinite subset of people every two
of whom know each other, or there is an infinite subset no two members of
which know each other.

FINITE RAMSEY THEOREM. For every triple of natural numbers, k,l,r,
there exists a natural number R(k,l,r) with the following property. If
N > R(k,l,r) and the set of all k-subsets of [N] is coloured using r colours,
then there is a subset A C [N] of cardinality |A| =1 such that all k-subsets
of A have the same colour.

REMARK 11. The Infinite Ramsey Theorem implies the finite version
through a simple compactness argument. At the same time, the infinite version
does not seem quite to follow from the finite one. The finite version is
equivalent to the following statement :

Let X be an infinite set, and let k be a natural number. For every finite
colouring of [X1* and every natural n there exists a subset A C X of
cardinality n such that [A]* is monochromatic.

A good introductory reference to Ramsey theory is [Gral.

Denote by Aut(Q) the group of all order-preserving bijections of the set of
rational numbers, equipped with the topology of pointwise convergence on the
discrete set Q. In other words, we regard Aut(Q) as a (closed) topological
subgroup of S.,. A basic system of neighbourhoods of identity is formed
by open subgroups each of which stabilizes elements of a given finite subset

of Q.

EXERCISE 10. Use Corollary 7 to prove that the finite Ramsey theorem
1s equivalent to the statement:

The topological group Aut(Q) is extremely amenable.

[Hint. For a finite subset M C Q, the left factor space of Aut(Q) by
the stabilizer of M can be identified with the set [Q]*, where n = M|,

equipped with the discrete uniformity (or {0, 1}-valued metric). Cover [Q]"
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with finitely many sets on each of which the given function f has oscillation
< g, and apply Ramsey’s theorem. Use Remark 11.]

6.4 EXTREME AMENABILITY AND MINIMAL FLOWS

COROLLARY 8. The group of orientation-preserving homeomorphisms of
the closed unit interval, Homeo (), equipped with the compact-open topology,
is extremely amenable.

Proof. Indeed, the extremely amenable group Aut(Q) admits a continuous
monomorphism with a dense image into the group Homeo (I).

REMARK 12. Thompson’s group F consists of all piecewise-linear home-
omorphisms of the interval whose points of non-smoothness are finitely many
dyadic rational numbers, and the slopes of any linear part are powers of 2. (See
[CFP].) It is a major open question in combinatorial group theory whether the
Thompson group is amenable. Since F is everywhere dense in Homeo (I),
our Corollary 8 does not contradict the possible amenability of F.

Using the extreme amenability of the topological groups Aut(Q) and
Homeo_ (I), one is able to compute explicitly the universal minimal flows of
some larger topological groups as follows.

COROLLARY 9. The circle S' forms the universal minimal Homeo_ (S')-
space.

Proof. Let 0 € S! be an arbitrary point. The isotropy subgroup St 4 of
is isomorphic to Homeo, (I). Because of that, whenever the topological group
Homeo, (S!) acts continuously on a compact space X, the subgroup St g
has a fixed point, say x’ € X. The mapping Homeo,(S!) 3 h — h(X') € X
is constant on the left St g-cosets and therefore gives rise to a continuous
equivariant map Homeo, (S')/ St ¢ & S' — X.

For the above results concerning groups Aut(Q), Homeo,(I), and
Homeo_ (S'), see [P1].

Now denote by LO the set of all linear orders on Z, equipped with the
(compact) topology induced from {0,1}%%Z. The group S., acts on LO by
double permutations.
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EXERCISE 11. Prove that the action of S, on LO is continuous and
minimal (that is, the orbit of each linear order is everywhere dense in LO).

Recall that a linear order < is called dense if it has no gaps. A dense
linear order without least and greatest elements is said to be of type 1. The
collection LO,, of all linear orders of type n on Z can be identified with the
factor space S,/ Aut(<) through the correspondence o — “<. Here < 1is
some chosen linear order of type 1 on Z and Aut(<) stands for the group
of order-preserving self-bijections of (Z, <), acting on the space of orders in
a natural way: (x °<y) < o lx < o7 ly.

EXERCISE 12. Show that under the above identification the uniform
structure on LO,, induced from the compact space LO, is the finest uniform
structure making the quotient map So, — Soo/ Aut(<) = LO,, right uniformly
continuous.

Let now X be a compact S -space. The topological subgroup Aut(<) of
Soo has a fixed point in X, say x’ (Exercise 10). The mapping S, > o
o(x") € X is constant on the left Aut(<)-cosets and thus gives rise to a
mapping ¢: LO, — X. Using Exercise 12, it is easy to see that ¢ is right
uniformly continuous and thus extends to a morphism of S, -spaces LO — X.
We have established the following result.

THEOREM 6 (Glasner and Weiss [Gl-W]). The compact space LO forms
the universal minimal S -space.

6.5 THE URYSOHN METRIC SPACE

The universal Urysohn metric space U [Ur] is determined uniquely (up
to an isometry) by the following conditions :

(1) U is a complete separable metric space;

(i) U is w-homogeneous, that is, every isometry between two finite
subspaces of U extends to an isometry of U;

(iii) U contains an isometric copy of every separable metric space.

A probabilistic description of this space was given by Vershik [Ver]: the
completion of the space of integers equipped with a ‘sufficiently random’
metric 1S almost surely isometric to U.

The group of isometries Iso(U) with the compact-open topology is a
Polish (complete metric separable) topological group, which also possesses
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a universality property: it contains an isomorphic copy of every separable
metric group [Usp]. See also [Gr3].

- Using concentration of measure, one can prove that the group Iso(U) is
extremely amenable. The Ramsey—Dvoretzky—Milman property leads to the
following Ramsey-type result:

Let F be a finite metric space, and let all isometric embeddings of F into
U be coloured using finitely many colours. Then for every finite metric space
G and every € > 0 there is an isometric copy G' C U of G such that all
isometric embeddings of F into U that factor through G are monochromatic
to within €.

FIGURE 5

A Ramsey-type result for metric spaces

Here we say that a set A is monochromatic to within € if there is a
monochromatic set A’ at a Hausdorff distance < ¢ from A. In our case, the
Hausdorff distance is formed with regard to the uniform metric on U”.

One can also obtain similar results, for example, for the separable Hilbert
space ¢, and for the unit sphere S in ¢, [P3]. ‘ .

7. CONCENTRATION TO A NON-TRIVIAL SPACE

Let f be a Borel measurable real-valued function on an mm-space
X = X,d,r). A number M = My is called a median (or Levy mean) of
f if both f~'[M, +o00) and f~'(—oo,M] have measure >

N

EXERCISE 13. Show that the median M; always exists, though it need
not be unique.
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EXERCISE 14. Assume that a function f as above is 1-Lipschitz, that is,
|f(x) — f(y)| < d(x,y) for all x,y € X. Prove that for every € > 0,

p{| f(x) — My| > e} < 2ax(e).

Thus, one can express the phenomenon of concentration of measure
by stating that on a ‘high-dimensional’ mm-space, every Lipschitz (more
generally, uniformly continuous) function is, probabilistically, almost constant.

Following Gromov [Gr3, 3%.45], let us recast the concentration phe-
nomenon yet again.

On the space L(0,1) of all measurable functions define the metric me;,
generating the topology of convergence in measure, by letting meq(hy, hy)
stand for the infimum of all A > 0 with the property

pP{h(x) — ha()| > A} < .

(Here (D denotes the Lebesgue measure on the unit interval I = [0, 1].)
Now let X = (X,dx, ux) and Y = (¥,dy, uy) be two Polish mm-spaces.
There exist measurable maps f: I — X, g: I — Y such that uy = f, u(" and
py = g« u. Denote by Ly the set of all functions of the form 4 = h o f,
where h;: X — R is 1-Lipschitz, having the property A(0) = 0. Similarly,
define the set L,. Now define a non-negative real number H,Lu(X,Y) as the
infimum of Hausdorff distances between Ly and L, (formed using the metric

me; on the space of functions), taken over all parametrizations f and ¢ as
above.

Hausdorff :
Lip (Y
) distance_ — l{).,lh( )

FIGURE 6

Gromov’s distance H,L. between mm-spaces
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EXERCISE 15. Prove that H, L. is a metric on the space of (isomorphism
classes of) all Polish mm-spaces.

EXERCISE 16. Prove that a sequence of mm-spaces X, = (X.,d,, tin)
forms a Lévy family if and only if it converges to the trivial mm-space in

the metric H ;L :
H, L.

If one now replaces the trivial space on the right hand side with an arbitrary
mm-space®), one obtains the concept of concentration to a non-trivial space.

According to Gromov, this type of concentration commonly occurs in
statistical physics. At the same time, there are very few known non-trivial
examples of this kind in the context of transformation groups.

Here is just one problem in this direction, suggested by Gromov. Every
probability measure v on a group G determines a random walk on G. How
can one associate to (G, v) in a natural way a sequence of mm-spaces which
would concentrate to the boundary [Fur] of the random walk ?

8. READING SUGGESTIONS

The 2001 Borel seminar was based on Chapter 3% of the green book [Gr3],
which contains a wealth of ideas and concepts and can be complemented by
[Gr4]. The survey [M3] by Vitali Milman, to whom we owe the present status
of the concentration of measure phenomenon, is highly relevant and rich in
material, especially if read in conjunction with a recent account of the subject
by the same author [M4]. The book [M-S] is, in a sense, indispensable and
should always be within one’s reach. Talagrand’s fundamental paper [Tal]
has to be at least browsed by every learner of the subject, while the paper
[Ta2] of the same author offers an independent introduction to the subject
of concentration of measure. The newly-published book by Ledoux [Led],
apparently the first ever monograph devoted exclusively to concentration, is
highly readable and covers a wide range of topics. Don’t miss the introductory
survey by Schechtman [Sch]. The modern setting for concentration was
designed in the important paper [Gr-M1] by Gromov and Milman, which
had also introduced the subject of this lecture and from which many results
(perhaps with slight modifications) have been taken.

%) Or, more generally, a uniform space — for instance, a non-metrizable compact space —
with measure.
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