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4. NILPOTENT LIE ALGEBRAS WITH INFINITELY MANY
NON-ISOMORPHIC RATIONAL FORMS

In this section we propose a construction which can provide a series of nil-
potent Lie algebras with infinitely many isomorphism classes of rational forms.

4.1 BASIC LEMMA

Let .
h= E_Bl b: = H(Q)

be a graded Lie algebra over Q generated by h;. Let K be a number field,
dimg K = d, of type (s, 1), that is, there are s real and 2¢ complex embeddings
of K in C (d = s + 2t) whence there exists an isomorphism of R-algebras

s t
KooR= HRaGC.
k=1 =1

More generally one can take a finite-dimensional commutative associative
algebra A over Q instead of K. We consider the Lie algebra h(K) = h®qK
as a Lie algebra over Q. This algebra has two important properties. Firstly,

t

h(K) @q R = (h o K) ®¢ R = h @ (K ®q R) = éb(k)@l@lwcx

ie, h(K) is a Q-form of the last Lie algebra for any number field K of
type (s,?). Secondly, there is an embedding R: K* — Autg(h(K)) of the
multiplicative group K* such that R(k)(h; ® k1) = h; @ kk' where h; € h; is
homogenenous of degree i. The following lemma is straightforward.

LEMMA 4.1. Let K # K' be two distinct number fields of the same type.
If there is no injection of K* into Autg(h(K')) then two Q-forms H(K) and
h(K') are not isomorphic.

4.2 PROOF OF THEOREM 2

We start with the class of nilpotence ¢ = 2. Let K = Q(y/m) and
K' = Q(y/n), where m # n are two positive (resp. negative) square-free
integers. Consider the automorphism A = R(y/m) of h(K) = f,(p,K). One
immediately checks that

1) A% acts on h(K)/[H(K), h(K)] as m - Id ;

2) the restriction

Al pay =m - Id .
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By Lemma 4.1 we must prove that there is no such automorphism for
h(K') = h(Q(/n)). We choose the following basis of h(K') over Q:

Xi:X,’@l, Yi:xi®\/r_z, CU:CU®17 sz:Czj@\/;l,

X1, -,%,C;j = [x;,x;] being the standard basis of f,(p, Q).
Suppose that there exists an automorphism A’ with two above properties.
First of all, let us show that [X;,A'(X;)] = 0. On the one hand,

A'[X;, A'(X)] = [A' (X)), mX;] = —m[X;,A"(X))] .
On the other hand,
A'X;, A'(X)] = mIX;, A" (X)].
Since the centralizer of X; is generated modulo the centre by X;, Y; it follows
that
AX)=pXi+qYi+e=xQ@pi+qgvn+e, ¢;#0.

Here ¢ stands for a central element which plays no role below.

Consider now [X;,A’'(X;)] = ¢ ® (pj + gj+/n). On the one hand,

A'[X;, A'(X)] = [A' (X)), mX;] = c;j @ m(p; + qiv/n) .
On the other hand,

A'[X;, A/ (X)) = m[X;, A'(X)] = ¢ @ m(p; + q;v/n),
whence

pitavn=pi+qgVn=p+q/ng¢ Q Vi,j.
Finally, we apply A’ to [A'(X),A’(X))] = ¢; ® (p + g+/n)*. On the one
hand,
A'TA (X)), A (X)] = [mX;, mX;]1 = c¢; @ m*.
On the other hand,
A'TA (X)), A (X;)] = m[A' (X)), A'(X)] = c;; @ m(p + qv/n)” .

It follows that m = (p + g+/n)*>. We have obtained a contradiction since
qg # 0. Thus, there are infinitely many non-isomorphic rational forms of
f2(p,R) ® f,(p,R) and of f,(p,C).

More generally let g = f.(p,R) be a free nilpotent Lie algebra of class
¢ >3 on p generators. Then g® g and g ®r C = f.(p,C) (as a Lie algebra
over R) also have infinitely many non-isomorphic rational forms. Consider
the automorphism A as above and note that it respects the descending central
series. Any isomorphism between f.(p,K) and f.(p,K’) must respect it, too.
Then we can take the free nilpotent quotients of class 2 of both algebras and
obtain a contradiction just like in the first part of the proof. [
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Thus, the case of a free nilpotent Lie algebra f.(p,C) (as a Lie algebra
over R) on p generators differs from the case 2.2.

REMARK. All rational forms of {2(2, C) = hei;(C) and 12(2, R)®H(2,R) =
heis(R) @ heiz(R) are listed in Theorem 3.

COROLLARY 4.2. There are infinitely many non-commensurable (in any
sense) lattices in the Lie groups of type F.(p,R) x F.(p,R) where F.(p,R)
is the free nilpotent Lie group on p free generators.

4.3 CLASSIFICATION OF RATIONAL FORMS FOR SOME 6-DIMENSIONAL LIE
ALGEBRAS

Let m be a rational number and A, = Q[x]/(x* — m). A, is a 2-
dimensional commutative algebra over Q which depends only on m modulo
square factors. Thus there are four types of A, :

Dif m=1then 4,2 Q®Q;

2) if m > 1 is a positive square-free integer then A, = Q(y/m) is a real
quadratic field over Q;

3) if m =0 then A is the algebra of dual numbers over Q;

4) if m is a negative square-free integer then A,, = Q(y/m) is an imaginary
quadratic field over Q.

Let heiz(A,,) be a Heisenberg algebra over A,, considered over Q. Then
heis(A,) is a rational form of either heis(R) @ hei;(R), or heis(R[x]/(x?)), or
heiz(C). More precisely,

THEOREM 3. Let §) be a 6-dimensional nilpotent Lie algebra of class 2
over Q. Suppose that [h,h] coincides with the 2-dimensional centre of Y.
Then b == heis(A,,) for some m € Q as above.

Moreover,

1) b ®qR=heiz(R) B heis(R) =g, iff m>0,
2) h®QR=hel;RIx]/(X*)=g0  iff m=0,
3) h®gR=heiz(C)=g_ iff m<O,

and up to isomorphism there are no more rational forms for g_, go, g+.

The Lie algebras heiz(An,) and heiz(A,) are isomorphic over Q if and only
if A and A, are isomorphic.
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Proof. - Take some Q-basis xj,...,xg of h. First of all, we may suppose
that [x;,x;] = x5 (possibly after a change of basis). Thus x5 is central. We
have to deal with two cases.

CASE 1. All brackets [x1,x] , [x2,x] (j > 3) are multiples of xs. If
[x1,x]] = ajxs, [x2,x;]] = bjxs then we set X; = x; — a;xo + bjx; whence
[x1,X;] = [x2, X;] = 0.

Since [h,h] is 2-dimensional we conclude that some commutator, say

[x3,x4], is not a multiple of x5 (for convenience, we use lower-case ‘x’
instead of ‘X’). Consider

4.1) [x3,x4] = ax; + bxy + cx3 + dxs + exs + fxg .

Commuting [x3,x4] with x;, x, we obtain that a = b = 0. Let us suppose
that f = 0. Then

4.2) [x3,x4] = cx3 + dx4 + exs .

Recall that x5 and [x3,x4] in the form (4.2) span the 2-dimensional centre.
Commuting cx3 + dx4 + exs from (4.2) with x3, x4 we get c =d =0 and
a contradiction. Thus f # 0. We may assume that [x3,x4] = x¢ where xg 1S
central. Hence, we have the following multiplication table for b : [x, x;] = x5,
[x3,x4] = xg, other brackets being equal to 0. Consequently,

h = (x1,%2,%s5) @ (x3,X4,%6) = heiz(Q) @ heiz(Q).

CASE 2. Among the brackets [xi,x;] , [x2,x] (j > 3) there is at least
one which is not a multiple of xs. In this case we may suppose (changing
indices if necessary) that this bracket is [x;,x3]. Let

4.3) [x1,x3] = axy + bxy + cx3 + dxg4 + exs + fxg
and let us suppose that d = f = 0. Then
4.4) [x1,x3] = ax; + bxy + cx3 + exs .
Commuting the right-hand term of (4.4) with x; we get
0 = [x1, [x1,x3]] = bxs + clx1,x3] = cax) + cbxp + cZxs; + (ce + b)xs .

Hence ¢ = b = 0. By virtue of this @ = 0 and we obtain a contradiction
if we commute both sides of (4.4) with x,. It follows that either d # 0 or
f # 0. In other words, we may suppose that [xi,x3] is equal to xs.
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Now
4.5) [x1,%] = x5, [x1,Xx3] = X6

where x5, x¢ span [h,h]. Suppose that [x;,x3] = axs + bxs. Adding if
necessary some multiples of x; to x, and x3 we obtain [xp,x3] = 0. In the
same way we may suppose that [xq,x4] = 0. Adding to x4 some multiple of
x1 we also obtain a relation [x;,x4] = Cxg. Moreover, after scaling x; we
get C=0 or C=1. Thus, h has a basis in which the non-trivial brackets
are the following:

4.6) [x1,x2] = x5, [x1,x3] = X6,

X2, x4] =Cx¢ (C=0o0r C=1), [x3,x4] = Axs + Bxg .

In any case A%+ B%+ C? # 0 because x; cannot belong to the 2-dimensional
centre of .
We will show that we can always make C =1 and B =0 in (4.6).

SUBCASE 2.1. If C =0 then the following basis transformation
X =x1, Xy = axy + x3,
X3 = Axp + Bxs, X4 = x4,
yields (a is any constant such that aB # A)
[X1,X5] = axs +x¢ = X5, [X1,X3] = Axs + Bxs = X,
[X2, X4] = Axs + Bxs = Xs , [X3,X4] = B(Axs + Bxg) = BXs .
From now on we may suppose that C = 1 in (4.6) and we arrive at

4.7)

(4.8)

SUBCASE 2.2: C=1,A=0. Let
Xi=x1+axy, Xp=2x—axs,
X3 = x +dx3, X4 = —x1 +dxyg,
where a,d,a+d #0, aB # 1, dB # —1. Hence
[X1,X2] = x5 + (a’B — 2a)x = Xs,
[X1,X3] = x5 + (d — a — adB)xs = X,
[X2,X4] = x5 + (d — a — adB)xs = X,
[X3,X4] = x5 + (d°B + 2d)xs = X5 + (1 — \)Xs.
Since a, d and a+d are all non-zero, X5 and X¢ are linearly independent.
Straightforward computations yield
dB +1
aB — 1
Thus we have the following alternative.

4.9)

(4.10)

A=

#0, 1
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SUBCASE 2.3.1: C=1; A, B,4A+B*+#0. Let now

X1 =x1 +txyq, Xy = xp — tx3,
@.11) 1 = X1+ Ix4 2 =X 3
X3 = x3, X4 = x4,

where ¢ = —B/2A. Hence
[X1,Xo] = (1 + A)xs + (B — 20)x6 = X5,

[X17X3] — —tAX5 + (1 - ZB)X6 - X6 3
[X2,X4] = —tAxs + (1 — tB)xg = X,

2
[X3,X4] = Axs + Bxg = aXs = ﬁi—BiXs :

(4.12)

SUBCASE 232: C = 1; A B # 0, 4A + B> = 0. The same
transformation (4.11) yields

[X1,X2] =0,

[X1,X3] = —tAxs + (1 — tB)xg = X6,
(X2, Xa] = —tAxs 4+ (1 — 1B)xg = Xe ,
[X3,X4] = Axs + Bxg = X5

(4.13)

and, after the transformation x; = X3, x, = X4, x3 = X1, x4 = X, x5 = X5,

x¢ = —Xg, we obtain (4.12) with o = 0. Anyway, we obtain the desired form
of b
4.14)  [yxl=xs, [xi,xl=x, [x,x4]=x¢, [x3,x4]=Axs.

Scaling x3, x4 by A # 0 we may suppose that A = m where m is a
square-free integer as above. |

In order to conclude the proof of the first part of the theorem we point
out an isomorphism p: h — heiz(4,,). Recall that A,, has a basis 1, x over
Q such that x> = m. Here are the matrices representing p(x;) if m # 1 (the
case m = 1 is left to the reader as an easy exercise):

0 0 0 0 0
px)=10 0 0 px2) =10 0 1], pxs)=1{0
0 0 O 0 0 0 0

0 0 0O —x O 0
pt3) =10 , pGa)=1{0 0 0}, plxe)= 1|0
0 0 0O 0 O 0

O OO

—
(@)
\_/

(4.15)

oS OO
=

SO O
O O =
N——
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Now it is evident that h ®g R is isomorphic to either heiz(R) @ hei;(R),
or heiz(R[x] /(xz)), or hei;(C) depending on the sign of m. Thus, we have
classified up to Q-isomorphism all rational forms for these 3 real Lie algebras.
By Theorem 2 these forms are non-isomorphic. The proof of the theorem is
complete. [

REMARK. It is worth mentioning that the above three real Lie algebras
are not pairwise isomorphic over R. Indeed, the centralizer of any element in
g— = beiz(C) is even dimensional over R since this algebra can be viewed
as a complex Lie algebra, whereas in both g, = heiz(R) @ heiz(R) and
go = heis(R[x]/ (x?)) there are elements with 5-dimensional centralizers. In
order to show that the last two algebras are not isomorphic we need some
more information about elements with 5-dimensional centralizers.

The centralizer C(x) will not be changed if we scale x by any A # 0 or
add to x any central element. This means that dimension of the centralizer
is a well-defined function on the projective space P(g/[g,g]) where g is
either g4 or go. Straightforward computations show that in P(go/[g0, go])
all points with 5-dimensional centralizer belong to a unique line whereas in
P(g+/[g+,9+]) the points under consideration form two disjoint lines.
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