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3. Real Lie algebras go and gi are not isomorphic but Mt ^ 0 gr gi.
4. If te Q \ {0} then the rational algebra g, gi over Q.
5. go and gi are two Lie algebras with a unique rational form up to

isomorphism.
6. Let g be a split real simple Lie algebra of type G2, f) be a Cartan

subalgebra of g and g n_ © f) ® n+ be the triangular decomposition of
g with respect to f). Then n+ is isomorphic to go.

3. Malcev's example

In this Section we develop Malcev's example and prove Theorem 1.

Suppose that there is a Q-isomorphism between g, and qs. It must be

written in the following form (cf. [5]) since C2gr (JC4, JC5, JC6), C3gf (xs.xe)
and the centralizer c of C2g, which is an ideal in this case, is spanned by
X3 5 Xß

yi ai\X\ + 012X2+013X3+014X4 +
y2 — &2\X\ + 0^22X2+^23X3+^24X4 +

<

y3 033X3+^34X4 +...
^

y4 — <244X4 +
We do not explicit the expressions for y5, y6 • Here y1,..,, y6 are basis elements
of qs satisfying the relations (1.2).

We obtain after straightforward computations that

\yuyi] y4 Ax4 + p

A <2h<222 — <2i2<22i <244 / 0. On the other hand,

y5 Lyi 5 ^4] A9211X5 + <2i2X6)

y6 1+2,34] — A(<22lX5 + <222X6)

Hence,

(3
1+ (a22y5- auy6)/A2

|x6 (any6-

We need to compute the remaining two brackets. First of all,

(3.2) 1+1, 34] ^11^331+1, X3] + <2i2<233 [X2, X3] + <2H<234[Xi,X4] + <2i2<234[x2, X4]

<2n <233X6 + <2i2<233(X5 + tXß) + <2i 1034X5 + <212034X6

(<2i2<233 + <2h<234)x5 + (<2n<233 + <2i2<234 + tai2a33)x6 — y6
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Let u <2i2<333 + flu <234, v a\\a33 + <212034 + t<2i2<233 • hi view of (3.1) and

(3.2) we have

(«32275 - «1276) u/A2+ (an - a2175) v/A2

whence

(3.3)

It follows that

(3.4)

va\\ — ua.\2 — A2

vo2\ - ua22 0

I u Ü21A,

I V 022A

In addition,

(3.5) \y2,ys\ a2\a33[xux3] + <222^33 [*2, *3] + a2\<234[xi,x4] + <222<234fe,^4]

<221 <233^6 + <222<233 fe ~T tx6) + <221 <234X5 + <222<234^6

(<222<233 + <221<234)X5 + (<221 <233 + <222^34 + ta22^33)x6 y5 + ^6 •

Let p <222^33 ~h<221<234, q — d-21^33 T <222<234 T ^22<233 • hi view of (3.1), (3.5)

(<22275 - al2y6)p/A2+ (any6-+ «76

This implies that

I qa\\ — pan — sA2
(3.6)

Consequently,

(3.7)

qa2i- pa22-A2

I p— (sa2i+ an) A,

[ q- sa22+ an) A.

Substituting u,v,p,q by the expressions given in (3.4), (3.7) we conclude that

<2H<234 + <2i2<233 <22lA

<2ll<233 + <2l2(<234 + ^33) <222A

<221 <234 + <222<233 — (<2ll + ^<22l) A

^
<221<233 + <222(<234 + ^33) — (<2i2 + SCI22) A

The first and the third equations of (3.8) yield

J <234 <22l<222 — <2l2(<2l 1 + S<22l)

I fl33 flll(<2n + S<22l) — <221 <222 •

(3.8)

(3.9)
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The two remaining ones yield

f <233 #22*222 — *2i2(#12 + SÜ22)

<234 + £#33 — ^11 (#12 H" sa2l) ~ *221 #21 5

.#11 + 5'#II#21 — #21 #22 ~~ ^*222# 12 — a\2 7^ ^
5

2(#h#12 — #21*222) + £(#h#22 *221 #12) + S#ll#21 ~~ a2l) *

•Til #11 H~ ^#21/2

*12 *212 + ^#22/2

*21 #21 7

^
X22 — #22 •

The system (3.11) can be rewritten in the form

4 - (1 + //4)x2, - (1 + ± 0,

2(xnxi2-(1+ s2/4)x2ix22)t(x{i - (1+
(3.12)

Thus we may conclude that Qt $s if and only if (3.12) has a rational
solution such that x\\X22 —-*12*21 7^ 0. We state the following lemma in order

to obtain less sophisticated conditions on 4 t.

LEMMA 3.1. Let s,t G Q. Then two conditions are equivalent:
i) there exists a matrix

M=(X y
G GL2(Q)

\Z wJ

such that x,y,z,w satisfy the system

x2-(1+ s2/4)z2+ (1 + 7 0,

\ 2(xy - (1 + s2/4)zw)- tix2 - (1 + s2/4)z2).

ii) there exists q G Q such that

(3.14) (t2 + 4)(s2 + 4) q2.

Proof. Let p1 + s2/4, r1 + t2/4. The system (3.13) yields

(3.13)

(3.15)
x + y2 p(z2 + 2u2),

2xy - tx2 — p(2zw - tz2).
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After the change of variables

x x0, y — ~(jo + tXo) z=— w l-(wo + -zo)
2 p 2 p

the system (3.15) can be rewritten as

**0 + ^0 ~ ^0 + |w0 »

-WO ZjqWQ •

Geometrically, the system (3.16) defines the intersection I of two qnadrics
in the projective space P3. Let a: P1 x P1 -» P3 be the Segre map. In
homogeneous coordinates (a : b\ a : ß) in P1 x P1, a is defined by xo aa,
yo — bß, zo aß, wo ba, and the image cr(P1 xP1) is the zero locus of
the polynomial xoyo ~~ zowo •

It is not hard to verify that in coordinates (a : b; a : ß) the preimage
er—1 (/) is given by the following equation (corresponding to the first one of
(3.16)):

{Ara2 — pb2)(pa2 — ß2) 0.

Thus cr~l{l) is the union of two pairs of lines (over R). The second pair
defined by the equation pa2 — ß2 0 yields xw — zy — det(M) 0. It follows
that (3.15) has a rational solution if and only if the equation Ara2 — pb2 — 0

has one, i.e., p/Ar is the square of a rational number. This is equivalent to

(3.14). Note that the condition x2 — pz2 ^ 0 in (3.13) is not very restrictive.
This completes the proof of the lemma and of Theorem 1.

COROLLARY 3.2. There are infinitely many non-isomorphic Lie algebras

of the type £L over Q.

Proof Let s\ pn be an odd prime. Consider ^ + 4=^ + 4= pnff

It is clear that s\-\-A is not a square (this means that at least one of the n2j is

odd) and is not divisible by pu, whence all the p2j Pn> Let s2 — pnPn
It follows that

4 + 4=/^...
is not a square and is not divisible by ptj where i < 2. Then we set

5*3 p\\P2i •. ./?3i. • • and so on.

In such a way we obtain an infinite sequence of numbers s i, s2 Let
i < j. Note that {s2 + A)(sj + 4) 7^ q2, q e Q. Indeed, by the construction
{s2 A-A) is divisible by some p and not divisible by p2. Also, p divides sj.
Consequently, it does not divide sj + 4. This means that (s2 + 4) {sj + 4) is

divisible by p but not by p2, and this completes the proof.
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