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3. Real Lie algebras gy and g; are not isomorphic but V1 A0 g, = g;.

4. If t € Q\ {0} then the rational algebra g, = g; over Q.

5. go and g; are two Lie algebras with a unique rational form up to
1somorphism. ‘

6. Let g be a split real simple Lie algebra of type G,, h be a Cartan
subalgebra of g and g =n_ @ h®n, be the triangular decomposition of
g with respect to h. Then ny is isomorphic to go.

3. MALCEV’S EXAMPLE

In this Section we develop Malcev’s example and prove Theorem 1.
Suppose that there is a Q-isomorphism between g, and g,. It must be
written in the following form (cf. [5]) since C%g; = (x4, x5,%5), C°g: = (x5, %6)
and the centralizer ¢ of C?g, which is an ideal in this case, is spanned by
X3y.0.,X6.
(V1 = ai1x1 + apxotapxstagx, + ..

Y2 = ag1x1 + axnXp+anzxz+daypxs + ..

y3 = as3x3+azaxs + . ..
\ y4 = aq4X4 + e
We do not explicit the expressions for ys, ys. Here yy, ..., y¢ are basis elements

of g, satisfying the relations (1.2).
We obtain after straightforward computations that

1,21 = ya = Axq + ..

A = ajjayp — apaz; = asq 7 0. On the other hand,

= [y1,y4] = Alai1xs + ajzx6) ,

= [y2,ya] = Alag1xs + axxg) .
Hence,
a1 x5 = (apys — anys)/A*,

X6 = (a11ys — azys)/A*.

We need to compute the remaining two brackets. First of all,
(3.2) iyl = anasslxr, 31+ anasslxs, x31 + ajyasalxs, x4] + apasafxy, x4]
ai1as3xe + a12a33(xs + 1X6) + a11a34%s5 + A12a34%6

= (a12a33 + a11a34)x5s + (a11a33 + a12a34 + tapass)xs = yg .
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Let u = apass + a11a34, v = a11as3 + ajpdss + tapass. In view of (3.1) and
(3.2) we have

(a22ys — apys) u/A* + (a11ys — aa1ys) v/A* =y,

whence

(3.3)

vay — uap = A?,
vaz1 — Udyy = 0.

It follows that

— A ,
(3.4) { W=

V= a22A .

In addition,

(3.5) [yv2,y3] = an1azslx1, x3] 4 annazslxz, x3] 4+ a1 asalxy, x4] + axnazalxz, x4]

= ap1a33X¢ + axa33(xs5 + txg) + A1a34%5 + Axa34X6

= (apass +.a21a34)xs + (ax1a33 + axaszs + taxaszs)xe = ys + Sye .

Let p = axpaszs + ariass, g = az1ass + axpasqs +taxpass. In view of (3.1), (3.5)

(az2ys — a2ys) p/A> + (@11y6 — a21ys) 4/A* = y5 + sy¢ -
This implies that

a; — pay = sA?,
(3.6) qa 1 — paiz ;
qaz1 — pax = —A".
Consequently,
3.7) p = (say +an)A )
q = (saxn +apn)A.

Substituting u, v, p, q by the expressions given in (3.4), (3.7) we conclude that

( a1 ass + apaz; = axA,

3.8) ) aj1ass + apass + tazs) = anA,
. a21a34 + axasz = (a1 + sax) A,

| a21a33 + axn(ass + tazz) = (a2 + saxn)A.

The first and the third equations of (3.8) yield

(3.9) { a4 = ag1axy — ap(a; + sagy) ,

azy = aji{an + sazx) — axax .
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The two remaining ones yield

315 as3 = axpay — apan + san),

G40 ass + tazs = ayi(ayp + sax) — anda,
whence

311 V.ya%l + sapaz; — Cl%l = a%z — Sdrrdi1n — a%Q 75 O,
G-AD 2anay — andaz) + s(a1ay — ayan) = Had; + sanax — dj;) .
Let

:
X11 = ap + Sa21/2,
X1 = app + saxn /2,

X21 = 4Az1,

( X22 = d22 .

The system (3.11) can be rewritten in the form
(3.12) Xy — (L+ 8% /85, = —(xt, — (L + 57 /4)x3,) # 0,
2x11x12 — (1 + 82 /Axa1x00) = 13, — (1 + 52 /4)x5,) .

Thus we may conclude that g, =2 g, if and only if (3.12) has a rational
solution such that xjjxp; — x12x21 # 0. We state the following lemma in order
to obtain less sophisticated conditions on s, ¢.

LEMMA 3.1. Let s,t € Q. Then two conditions are equivalent :
1) there exists a matrix

M= (;“ 5}) € GL,(Q)

such that x,y,z,w satisfy the system

2 2/4y,2 — 2 2 2
513 { 2= (14547 = =y + (1 + /4w £0,

20y — (1 + 5°/Dzw) = t(x* — (1 + 52 /)22
11) there exists q € Q such that
(3.14) @+ 4+ 4 =g
Proof. Let p=1+s*/4, r=1+{2/4. The system (3.13) yields

{ ¥ +y* = p +v?),

(3.15)
2xy — tx* = pQRzw — 17%) .
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After the change of variables

‘ 1 b A
X=X, y:—(y0+ZXO), Z:_97 w:_(wO—I_“ZO)
2 p 2 p
the system (3.15) can be rewritten as
1 r p
2 2 2 2
rxg+ —yo = =25+ ~wq ,
(3.16) 0T 40 PO "0
X0Y0o = ZoWp -

Geometrically, the system (3.16) defines the intersection I of two quadrics
in the projective space P?. Let o: P! x P! — P be the Segre map. In
homogeneous coordinates (a: b;a : 8) in P! x P!, o is defined by xo = ac,

= bB, 70 = af, wo = ba, and the image o(P' x P') is the zero locus of
the polynomial xpyg — zowyo.

It is not hard to verify that in coordinates (a : b; o : 3) the preimage
o~ !(I) is given by the following equation (corresponding to the first one of
(3.16)):

(4ra® — pb*)(pa® — %) =0
Thus o~ !(I) is the union of two pairs of lines (over R). The second pair
defined by the equation pa?— 3% = 0 yields xw —zy = det(M) = 0. It follows
that (3.15) has a rational solution if and only if the equation 4ra*> — pb*> = 0
has one, i.e., p/4r is the square of a rational number. This is equivalent to
(3.14). Note that the condition x> — pz? # 0 in (3.13) is not very restrictive.
This completes the proof of the lemma and of Theorem 1.

COROLLARY 3.2. There are infinitely many non-isomorphic Lie algebras
of the type g over Q.

Proof. Let sl p11 be an odd prime. Consider s7+4 = pi+4 = pot. ..
It is clear that s1 +4 is not a square (this means that at least one of the ny; is
odd) and is not divisible by p;;, whence all the py; # p11. Let 55 = pipar ... .
It follows that

52 + 4 anl ‘v
is not a square and is not divisible by p; where i < 2. Then we set
=p11p21---P31-.-- and so on.
In such a way we obtain an infinite sequence of numbers s;, s,... Let

i < j. Note that (s? + 4)(s +4) # ¢*, q € Q. Indeed by the construction
(s? + 4) is divisible by some p and not divisible by p*. Also, p divides 5;.
Consequently, it does not divide s] + 4. This means that (s? + 4)(SJ +4) 1s
divisible by p but not by p?, and this completes the proof.
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