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ON THE RATIONAL FORMS OF NILPOTENT LIE ALGEBRAS
AND LATTICES IN NILPOTENT LIE GROUPS

by Yu. S. SEMENOV *)

ABSTRACT. We study the rational forms of real finite-dimensional nilpotent Lie
algebras and the corresponding lattices in nilpotent Lie groups. We show that for some
Lie algebras there are infinitely many such rational forms up to isomorphism and give
a description of isomorphism classes in several 6-dimensional cases. Nilpotent Lie
algebras with a unique rational form are also considered.

1. INTRODUCTION

Let g be a finite-dimensional Lie algebra over R and h be a Q-subalgebra
of g. We say that ) is a rational form (or Q-form) of g if there exists a
basis X of §h over Q such that X is a basis of g over R. In other words,
the inclusion h < g gives rise to an isomorphism h ®o R = g.

In the sequel all Lie algebras are assumed to be nilpotent and finite-
dimensional unless otherwise specified. The main purpose of the present work
is to describe rational forms for some real nilpotent Lie algebras. The rational
forms (or their isomorphism classes) in such algebras are closely related to
lattices, 1.e., discrete cocompact subgroups in nilpotent Lie groups.

Let G be a nilpotent connected 1-connected Lie group and g be the
Lie algebra of G. It is well known that exp: g — G and log: G — ¢
are two reciprocal diffeomorphisms. Let § be a rational form of g and
X = {x1,...,x4} be a basis of h). Malcev showed in [5] that the subgroup I

of G generated by exp(rx1),...,exp(rxs) (where r is an appropriate integer)
is a lattice of G.

*) This work has been supported by the Swiss National Science Foundation.
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If we change the basis of h we can obtain another subgroup I'; which
is strictly commensurable to I'. Here are three different definitions of
commensurability of lattices.

DEFINITION 1. Two lattices Iy and I', are strictly commensurable in a
Lie group G if I'y NI, is a subgroup of finite index in both I'; and I,.

DEFINITION 2. Two lattices I'; et I, are commensurable in a Lie group
G if there is an element ¢ € G such that I'y and ¢~ 'T,g are strictly
commensurable in G.

DEFINITION 3. Two lattices I'y and I, are abstractly commensurable if
there are two subgroups of finite index H; < I'; (i = 1,2) and an isomorphism
H = H,.

We can deduce the following proposition from Malcev’s results.

PROPOSITION 1.1. There are three bijections :
Lattices T°
1. {Q-forms of g} = { attices 1 of G };

up to strict commensurability
{ Q-forms of g } -~ { Lattices T of G }

up to adjoint automorphism Ad(g) | | up to commensurability

: { Q-forms of g } - { Lattices T of G }

up to Q-isomorphism up to abstract commensurablity

Proof. The bijection 1 is a classical result of Malcev [5]. The bijection 2
follows immediately from the first one and the fact that the Q-form Ad(g)h
corresponds to the lattice gT'g~! if and only if b corresponds tq T.

Let us prove the existence of the bijection 3. Let I'; be a lattice abstractly
commensurable with I’ and b, hy be the corresponding Q-forms. We may
assume from the very beginning (possibly passing to the subgroups of finite
index) that there is an isomorphism «: I'y — I. It is known [5] that « can
be extended to an automorphism &: G — G and this automorphism gives rise
to the automorphism dé&: g — g of the Lie algebra g. It is easy to see that
da(hy) = ha. |

Conversely, let 5: h; — b, be an isomorphism of Lie algebras over Q. It
is clear that 8 can be considered as an R-automorphism g — g. It induces the
automorphism B: G — G by means of the exponential map. Let I’y = B(I'y).
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Then I'; = I',. Moreover, the Q-form b, corresponds to the lattice I%.
Indeed, if exp(x) € I, then exp(x) = B(exp(y)) = exp(8(y)) for some y € b;.
Finally, x = 6(y) € h,. L]

In this paper we are mostly interested in nilpotent Lie algebras with many
rational forms (up to isomorphism). However, there are examples of nilpotent
Lie algebras without rational forms. One of them, involving a Lie algebra of
dimension 7 and class 6, is due to N. Bourbaki (see [1, Chap.1, §4, ex.18]).
In fact, this is the minimal dimension for such an example. There are nilpotent
Lie algebras of class 2 and of dimension d > 10 (see [5, 4]) without rational
forms. Note that the corresponding Lie groups have no lattices at all.

It is a trivial exercise to show that every abelian Lie algebra has a unique
rational form up to isomorphism. It follows from the results of Dixmier [3] that
every real nilpotent Lie algebra g of dimension < 5 has the same property.

Consider the following central extension over R of an abelian finite
dimensional real Lie algebra a:

(1.1) O—c—=b—>a—0

where ¢ 1s supposed to be a 1-dimensional ideal. The algebra b is in fact the
direct sum of a generalized Heisenberg algebra and an abelian one. In Section 2
we show that all such b have a unique rational form (up to isomorphism) as
well as all free real nilpotent Lie algebras.

In Section 3 we consider Malcev’s example of a 6-dimensional Lie algebra
of class 3 having infinitely many non-isomorphic rational forms in more details.
Let 7 € R. Consider the nilpotent Lie algebra g, with a basis xi,...,x and
the structure of Lie algebra given by the following relations :

(12) [x1, 0] = x4, [x1,x3] =x6, [x1,%4] = x5,

[x2,x3] = x5 + 1x6,  [x2,X4] = X6,
other brackets being trivial. Malcev showed [5] that for all # € R there is an
isomorphism g, = go over R but, for instance, g; and g, are not isomorphic
over Q.

The following theorem is proved.

THEOREM 1. Let s,t € Q. The Lie algebras g, and g; are isomorphic
over Q if and only if there is q € Q such that (s* + 4)(*> + 4) = g

In Section 4 we propose a construction providing nilpotent Lie algebras
with several non-isomorphic rational forms. As an application we prove the
following theorem.
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THEOREM 2. Let g = f.(p,R) be a free nilpotent Lie algebra of class
¢ > 2 on p generators. Then g®g and gRgr C = f.(p, C) (regarded over R)
have infinitely many non-isomorphic rational forms.

In Theorem 3 we also classify all rational forms for three 6-dimensional
real nilpotent Lie algebras g (two of them appear in Theorem 2 for p = ¢ = 2)
which are of class 2 and have 2-dimensional centre coinciding with the derived
subalgebra.

In conclusion let us mention a direct way to prove that two given lattices
in a nilpotent Lie group are not commensurable. For example, let G = UT3(R)
be the Lie group of upper triangular 3 x 3-matrices with 1 on the diagonal,
g = 12(2,R) be Lie algebra of G. Consider G X G and its Lie algebra
g © g which has infinitely many non-isomorphic rational forms §,, (m > 1
is a square-free integer), in view and in the notation of Theorems 2, 3 (see
Section 4 for more details).

Let I',, and I', be corresponding lattices in G X G for distinct m,n. One
can prove that the ratio of the covolumes of I, and I, with respect to a
Haar measure on G X G equals my/m/n\/n up to a rational factor. Hence the
lattices are not commensurable. Note that by Proposition 1.1 and Theorem 3
I, and I',, are not commensurable in any sense.

ACKNOWLEDGEMENTS. The author is grateful to Pierre de la Harpe who
attracted his attention to problems of commensurability and to the University
of Geneva for its hospitality. He thanks also Goulnara Arzhantseva and Thierry
Vust for helpful remarks.

2. NILPOTENT LIE ALGEBRAS WITH A UNIQUE
RATIONAL FORM UP TO ISOMORPHISM

2.1 HEISENBERG ALGEBRAS

Let us begin with the following considerations that we will use here and in
the next sections (see [2, Chapter 5] for more details). Suppose that a real Lie
algebra g has a Q-form § and i (resp. a ) 1s an ideal (resp. a subalgebra)
of g. We say that i (resp. a) is rational if iNh (resp. aMNb) is a rational
form of i (resp. a). For instance, the terms C*g of the lower central series
of g are rational as well as centralizers of rational subalgebras or ideals. It is
not hard to see that h/iNk is a rational form of the quotient Lie algebra g/i.
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Let
(2.1) g———il>iz>"'>ik+1:0

be a descending series of rational ideals of g. We say that a basis
X = {x1,...,x4} of arational form § is based on (2.1) if x;,...,x, generate
gmod iy, xi,...,x, generate g mod i3 and so on. It can be shown that such
a basis exists for any series (2.1). In the sequel we will use these kinds of
bases for a suitable descending series dealing, for instance, with Heisenberg
algebras.

Recall that the (generalized) Heisenberg algebra heiy ;(R) has an R-basis
Hy,...,Hy, in which

(2.2) (H,Hy] = [H3,Hs] = -+ = [Hok—1, Ho] = Hop1,

other brackets being trivial. Here the 1-dimensional centre is spanned by Hopg .

Given an extension (1.1) one can attach to it a 2-cocycle w: A’a — R
in the usual way. Also w can be regarded as a symplectic form on a. If
b = heiy, (R) then w is the canonical non-degenerate symplectic form with
respect to the basis Hy,...,Hy (mod R- Hyyq).

Let d = dimg a and let m = d — rank(w) be the codimension of the kernel
of w. It 1s not hard to see (cf. the proof of the proposition below) that the Lie
algebra b is uniquely defined up to R-isomorphism by d and m. Namely,

b = heig,,_,(R) B R™.

This implies that the centre of b is (m + 1)-dimensional. Thus, two Lie
algebras b; and b, (dimg b; = dimg b,) of type (1.1) are not 1somorphic
if m 75 my.

Evidently, heiy, ;(Q) is a rational form for hei,, 11 (R).

The following proposition holds.

PROPOSITION 2.1.  In the above notation let §) be a rational form of b. Let
d = dim(b)—1, m = dim[b, b] and let Q™ denote the abelian Lie Q-algebra
of dimension m. Then

b = beiyy_,(Q) ® Q™

over Q, i.e., there is a unique rational form for b up to Lsomorphism.

Proof. Choose a Q-basis Bj,...,By,; for . Either all brackets
[B;,Bj] =0, and then h =2 Q4t!, or there are I,J such that [B;,B;] = C #0.
We may suppose that C = B,y;. Thus the derived subalgebra of § is
spanned by B,y;. The corresponding symplectic form w is represented by a
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skew-symmetric d x d matrix M = (u;) with respect to the basis By, ..., By
(mod [h, h]). Namely, [B;, Bj] = p;jBs+1. Over Q one can choose a canonical
symplectic basis Bj,...,B; (mod [h,h]) so that the matrix M representing

w has [ blocks of type
0 1
-1 0

standing on the diagonal, the other entries being trivial. The rank of w is
equal to 2/ and 2/ =d — m. In the basis By,...,B;z+; (we omit the ‘hats’)
of §

[B1,B2] = [B3,B4] = - - - = [By—1, Byl = By,

all the other brackets being trivial. This completes the proof.

2.2 EXAMPLE OF A FREE NILPOTENT ALGEBRA

Let f.(n,R) be the free nilpotent Lie algebra of class ¢ on n generators.
Then f.(n,R) has a unique rational form f.(n,Q) up to isomorphism (cf.
Theorem 2).

Indeed, let h = (x1,...,X,,...) be a rational form of f.(n,R). We may
suppose that xi,...,x, span (modulo the derived subalgebra) h/[h,H] = Q".
Consequently, b is generated by {xi,...,x,} as a Lie algebra. There exists
an epimorphism 7: f.(n,Q) — h because f.(rn,Q) is free. It must be an
isomorphism since the dimension of f equals the dimension (not depending on
the ground field) of a free nilpotent Lie algebra of class ¢ on n generators.

2.3 MORE EXAMPLES

The purpose of this subsection is to sketch two more examples of Lie
algebras with a unique rational form up to isomorphism.

Let g;, # € R, be a family of real 6-dimensional Lie algebras with a basis
{x1,...,x6} such that

[X],XZ] = X3, [x17x3] = IXs ) [x17x5] = X6 ,

[x2, %3] = x4, [xp,xa]l =x5, [x3,%X4] = x6,

other brackets being trivial. One can show that

1. Cfg, = (Xe41,.--,%), k= 2,...,5, where C*g, are the terms of the
lower central series of g;.

2. The centralizer € of C*g;, thatis, € = {c € g, | [c, C*g;] = 0} is spanned
by X2y...,X6-
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3. Real Lie algebras gy and g; are not isomorphic but V1 A0 g, = g;.

4. If t € Q\ {0} then the rational algebra g, = g; over Q.

5. go and g; are two Lie algebras with a unique rational form up to
1somorphism. ‘

6. Let g be a split real simple Lie algebra of type G,, h be a Cartan
subalgebra of g and g =n_ @ h®n, be the triangular decomposition of
g with respect to h. Then ny is isomorphic to go.

3. MALCEV’S EXAMPLE

In this Section we develop Malcev’s example and prove Theorem 1.
Suppose that there is a Q-isomorphism between g, and g,. It must be
written in the following form (cf. [5]) since C%g; = (x4, x5,%5), C°g: = (x5, %6)
and the centralizer ¢ of C?g, which is an ideal in this case, is spanned by
X3y.0.,X6.
(V1 = ai1x1 + apxotapxstagx, + ..

Y2 = ag1x1 + axnXp+anzxz+daypxs + ..

y3 = as3x3+azaxs + . ..
\ y4 = aq4X4 + e
We do not explicit the expressions for ys, ys. Here yy, ..., y¢ are basis elements

of g, satisfying the relations (1.2).
We obtain after straightforward computations that

1,21 = ya = Axq + ..

A = ajjayp — apaz; = asq 7 0. On the other hand,

= [y1,y4] = Alai1xs + ajzx6) ,

= [y2,ya] = Alag1xs + axxg) .
Hence,
a1 x5 = (apys — anys)/A*,

X6 = (a11ys — azys)/A*.

We need to compute the remaining two brackets. First of all,
(3.2) iyl = anasslxr, 31+ anasslxs, x31 + ajyasalxs, x4] + apasafxy, x4]
ai1as3xe + a12a33(xs + 1X6) + a11a34%s5 + A12a34%6

= (a12a33 + a11a34)x5s + (a11a33 + a12a34 + tapass)xs = yg .




198 | YU. S. SEMENOV

Let u = apass + a11a34, v = a11as3 + ajpdss + tapass. In view of (3.1) and
(3.2) we have

(a22ys — apys) u/A* + (a11ys — aa1ys) v/A* =y,

whence

(3.3)

vay — uap = A?,
vaz1 — Udyy = 0.

It follows that

— A ,
(3.4) { W=

V= a22A .

In addition,

(3.5) [yv2,y3] = an1azslx1, x3] 4 annazslxz, x3] 4+ a1 asalxy, x4] + axnazalxz, x4]

= ap1a33X¢ + axa33(xs5 + txg) + A1a34%5 + Axa34X6

= (apass +.a21a34)xs + (ax1a33 + axaszs + taxaszs)xe = ys + Sye .

Let p = axpaszs + ariass, g = az1ass + axpasqs +taxpass. In view of (3.1), (3.5)

(az2ys — a2ys) p/A> + (@11y6 — a21ys) 4/A* = y5 + sy¢ -
This implies that

a; — pay = sA?,
(3.6) qa 1 — paiz ;
qaz1 — pax = —A".
Consequently,
3.7) p = (say +an)A )
q = (saxn +apn)A.

Substituting u, v, p, q by the expressions given in (3.4), (3.7) we conclude that

( a1 ass + apaz; = axA,

3.8) ) aj1ass + apass + tazs) = anA,
. a21a34 + axasz = (a1 + sax) A,

| a21a33 + axn(ass + tazz) = (a2 + saxn)A.

The first and the third equations of (3.8) yield

(3.9) { a4 = ag1axy — ap(a; + sagy) ,

azy = aji{an + sazx) — axax .
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The two remaining ones yield

315 as3 = axpay — apan + san),

G40 ass + tazs = ayi(ayp + sax) — anda,
whence

311 V.ya%l + sapaz; — Cl%l = a%z — Sdrrdi1n — a%Q 75 O,
G-AD 2anay — andaz) + s(a1ay — ayan) = Had; + sanax — dj;) .
Let

:
X11 = ap + Sa21/2,
X1 = app + saxn /2,

X21 = 4Az1,

( X22 = d22 .

The system (3.11) can be rewritten in the form
(3.12) Xy — (L+ 8% /85, = —(xt, — (L + 57 /4)x3,) # 0,
2x11x12 — (1 + 82 /Axa1x00) = 13, — (1 + 52 /4)x5,) .

Thus we may conclude that g, =2 g, if and only if (3.12) has a rational
solution such that xjjxp; — x12x21 # 0. We state the following lemma in order
to obtain less sophisticated conditions on s, ¢.

LEMMA 3.1. Let s,t € Q. Then two conditions are equivalent :
1) there exists a matrix

M= (;“ 5}) € GL,(Q)

such that x,y,z,w satisfy the system

2 2/4y,2 — 2 2 2
513 { 2= (14547 = =y + (1 + /4w £0,

20y — (1 + 5°/Dzw) = t(x* — (1 + 52 /)22
11) there exists q € Q such that
(3.14) @+ 4+ 4 =g
Proof. Let p=1+s*/4, r=1+{2/4. The system (3.13) yields

{ ¥ +y* = p +v?),

(3.15)
2xy — tx* = pQRzw — 17%) .
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After the change of variables

‘ 1 b A
X=X, y:—(y0+ZXO), Z:_97 w:_(wO—I_“ZO)
2 p 2 p
the system (3.15) can be rewritten as
1 r p
2 2 2 2
rxg+ —yo = =25+ ~wq ,
(3.16) 0T 40 PO "0
X0Y0o = ZoWp -

Geometrically, the system (3.16) defines the intersection I of two quadrics
in the projective space P?. Let o: P! x P! — P be the Segre map. In
homogeneous coordinates (a: b;a : 8) in P! x P!, o is defined by xo = ac,

= bB, 70 = af, wo = ba, and the image o(P' x P') is the zero locus of
the polynomial xpyg — zowyo.

It is not hard to verify that in coordinates (a : b; o : 3) the preimage
o~ !(I) is given by the following equation (corresponding to the first one of
(3.16)):

(4ra® — pb*)(pa® — %) =0
Thus o~ !(I) is the union of two pairs of lines (over R). The second pair
defined by the equation pa?— 3% = 0 yields xw —zy = det(M) = 0. It follows
that (3.15) has a rational solution if and only if the equation 4ra*> — pb*> = 0
has one, i.e., p/4r is the square of a rational number. This is equivalent to
(3.14). Note that the condition x> — pz? # 0 in (3.13) is not very restrictive.
This completes the proof of the lemma and of Theorem 1.

COROLLARY 3.2. There are infinitely many non-isomorphic Lie algebras
of the type g over Q.

Proof. Let sl p11 be an odd prime. Consider s7+4 = pi+4 = pot. ..
It is clear that s1 +4 is not a square (this means that at least one of the ny; is
odd) and is not divisible by p;;, whence all the py; # p11. Let 55 = pipar ... .
It follows that

52 + 4 anl ‘v
is not a square and is not divisible by p; where i < 2. Then we set
=p11p21---P31-.-- and so on.
In such a way we obtain an infinite sequence of numbers s;, s,... Let

i < j. Note that (s? + 4)(s +4) # ¢*, q € Q. Indeed by the construction
(s? + 4) is divisible by some p and not divisible by p*. Also, p divides 5;.
Consequently, it does not divide s] + 4. This means that (s? + 4)(SJ +4) 1s
divisible by p but not by p?, and this completes the proof.
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4. NILPOTENT LIE ALGEBRAS WITH INFINITELY MANY
NON-ISOMORPHIC RATIONAL FORMS

In this section we propose a construction which can provide a series of nil-
potent Lie algebras with infinitely many isomorphism classes of rational forms.

4.1 BASIC LEMMA

Let .
h= E_Bl b: = H(Q)

be a graded Lie algebra over Q generated by h;. Let K be a number field,
dimg K = d, of type (s, 1), that is, there are s real and 2¢ complex embeddings
of K in C (d = s + 2t) whence there exists an isomorphism of R-algebras

s t
KooR= HRaGC.
k=1 =1

More generally one can take a finite-dimensional commutative associative
algebra A over Q instead of K. We consider the Lie algebra h(K) = h®qK
as a Lie algebra over Q. This algebra has two important properties. Firstly,

t

h(K) @q R = (h o K) ®¢ R = h @ (K ®q R) = éb(k)@l@lwcx

ie, h(K) is a Q-form of the last Lie algebra for any number field K of
type (s,?). Secondly, there is an embedding R: K* — Autg(h(K)) of the
multiplicative group K* such that R(k)(h; ® k1) = h; @ kk' where h; € h; is
homogenenous of degree i. The following lemma is straightforward.

LEMMA 4.1. Let K # K' be two distinct number fields of the same type.
If there is no injection of K* into Autg(h(K')) then two Q-forms H(K) and
h(K') are not isomorphic.

4.2 PROOF OF THEOREM 2

We start with the class of nilpotence ¢ = 2. Let K = Q(y/m) and
K' = Q(y/n), where m # n are two positive (resp. negative) square-free
integers. Consider the automorphism A = R(y/m) of h(K) = f,(p,K). One
immediately checks that

1) A% acts on h(K)/[H(K), h(K)] as m - Id ;

2) the restriction

Al pay =m - Id .
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By Lemma 4.1 we must prove that there is no such automorphism for
h(K') = h(Q(/n)). We choose the following basis of h(K') over Q:

Xi:X,’@l, Yi:xi®\/r_z, CU:CU®17 sz:Czj@\/;l,

X1, -,%,C;j = [x;,x;] being the standard basis of f,(p, Q).
Suppose that there exists an automorphism A’ with two above properties.
First of all, let us show that [X;,A'(X;)] = 0. On the one hand,

A'[X;, A'(X)] = [A' (X)), mX;] = —m[X;,A"(X))] .
On the other hand,
A'X;, A'(X)] = mIX;, A" (X)].
Since the centralizer of X; is generated modulo the centre by X;, Y; it follows
that
AX)=pXi+qYi+e=xQ@pi+qgvn+e, ¢;#0.

Here ¢ stands for a central element which plays no role below.

Consider now [X;,A’'(X;)] = ¢ ® (pj + gj+/n). On the one hand,

A'[X;, A'(X)] = [A' (X)), mX;] = c;j @ m(p; + qiv/n) .
On the other hand,

A'[X;, A/ (X)) = m[X;, A'(X)] = ¢ @ m(p; + q;v/n),
whence

pitavn=pi+qgVn=p+q/ng¢ Q Vi,j.
Finally, we apply A’ to [A'(X),A’(X))] = ¢; ® (p + g+/n)*. On the one
hand,
A'TA (X)), A (X)] = [mX;, mX;]1 = c¢; @ m*.
On the other hand,
A'TA (X)), A (X;)] = m[A' (X)), A'(X)] = c;; @ m(p + qv/n)” .

It follows that m = (p + g+/n)*>. We have obtained a contradiction since
qg # 0. Thus, there are infinitely many non-isomorphic rational forms of
f2(p,R) ® f,(p,R) and of f,(p,C).

More generally let g = f.(p,R) be a free nilpotent Lie algebra of class
¢ >3 on p generators. Then g® g and g ®r C = f.(p,C) (as a Lie algebra
over R) also have infinitely many non-isomorphic rational forms. Consider
the automorphism A as above and note that it respects the descending central
series. Any isomorphism between f.(p,K) and f.(p,K’) must respect it, too.
Then we can take the free nilpotent quotients of class 2 of both algebras and
obtain a contradiction just like in the first part of the proof. [
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Thus, the case of a free nilpotent Lie algebra f.(p,C) (as a Lie algebra
over R) on p generators differs from the case 2.2.

REMARK. All rational forms of {2(2, C) = hei;(C) and 12(2, R)®H(2,R) =
heis(R) @ heiz(R) are listed in Theorem 3.

COROLLARY 4.2. There are infinitely many non-commensurable (in any
sense) lattices in the Lie groups of type F.(p,R) x F.(p,R) where F.(p,R)
is the free nilpotent Lie group on p free generators.

4.3 CLASSIFICATION OF RATIONAL FORMS FOR SOME 6-DIMENSIONAL LIE
ALGEBRAS

Let m be a rational number and A, = Q[x]/(x* — m). A, is a 2-
dimensional commutative algebra over Q which depends only on m modulo
square factors. Thus there are four types of A, :

Dif m=1then 4,2 Q®Q;

2) if m > 1 is a positive square-free integer then A, = Q(y/m) is a real
quadratic field over Q;

3) if m =0 then A is the algebra of dual numbers over Q;

4) if m is a negative square-free integer then A,, = Q(y/m) is an imaginary
quadratic field over Q.

Let heiz(A,,) be a Heisenberg algebra over A,, considered over Q. Then
heis(A,) is a rational form of either heis(R) @ hei;(R), or heis(R[x]/(x?)), or
heiz(C). More precisely,

THEOREM 3. Let §) be a 6-dimensional nilpotent Lie algebra of class 2
over Q. Suppose that [h,h] coincides with the 2-dimensional centre of Y.
Then b == heis(A,,) for some m € Q as above.

Moreover,

1) b ®qR=heiz(R) B heis(R) =g, iff m>0,
2) h®QR=hel;RIx]/(X*)=g0  iff m=0,
3) h®gR=heiz(C)=g_ iff m<O,

and up to isomorphism there are no more rational forms for g_, go, g+.

The Lie algebras heiz(An,) and heiz(A,) are isomorphic over Q if and only
if A and A, are isomorphic.
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Proof. - Take some Q-basis xj,...,xg of h. First of all, we may suppose
that [x;,x;] = x5 (possibly after a change of basis). Thus x5 is central. We
have to deal with two cases.

CASE 1. All brackets [x1,x] , [x2,x] (j > 3) are multiples of xs. If
[x1,x]] = ajxs, [x2,x;]] = bjxs then we set X; = x; — a;xo + bjx; whence
[x1,X;] = [x2, X;] = 0.

Since [h,h] is 2-dimensional we conclude that some commutator, say

[x3,x4], is not a multiple of x5 (for convenience, we use lower-case ‘x’
instead of ‘X’). Consider

4.1) [x3,x4] = ax; + bxy + cx3 + dxs + exs + fxg .

Commuting [x3,x4] with x;, x, we obtain that a = b = 0. Let us suppose
that f = 0. Then

4.2) [x3,x4] = cx3 + dx4 + exs .

Recall that x5 and [x3,x4] in the form (4.2) span the 2-dimensional centre.
Commuting cx3 + dx4 + exs from (4.2) with x3, x4 we get c =d =0 and
a contradiction. Thus f # 0. We may assume that [x3,x4] = x¢ where xg 1S
central. Hence, we have the following multiplication table for b : [x, x;] = x5,
[x3,x4] = xg, other brackets being equal to 0. Consequently,

h = (x1,%2,%s5) @ (x3,X4,%6) = heiz(Q) @ heiz(Q).

CASE 2. Among the brackets [xi,x;] , [x2,x] (j > 3) there is at least
one which is not a multiple of xs. In this case we may suppose (changing
indices if necessary) that this bracket is [x;,x3]. Let

4.3) [x1,x3] = axy + bxy + cx3 + dxg4 + exs + fxg
and let us suppose that d = f = 0. Then
4.4) [x1,x3] = ax; + bxy + cx3 + exs .
Commuting the right-hand term of (4.4) with x; we get
0 = [x1, [x1,x3]] = bxs + clx1,x3] = cax) + cbxp + cZxs; + (ce + b)xs .

Hence ¢ = b = 0. By virtue of this @ = 0 and we obtain a contradiction
if we commute both sides of (4.4) with x,. It follows that either d # 0 or
f # 0. In other words, we may suppose that [xi,x3] is equal to xs.
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Now
4.5) [x1,%] = x5, [x1,Xx3] = X6

where x5, x¢ span [h,h]. Suppose that [x;,x3] = axs + bxs. Adding if
necessary some multiples of x; to x, and x3 we obtain [xp,x3] = 0. In the
same way we may suppose that [xq,x4] = 0. Adding to x4 some multiple of
x1 we also obtain a relation [x;,x4] = Cxg. Moreover, after scaling x; we
get C=0 or C=1. Thus, h has a basis in which the non-trivial brackets
are the following:

4.6) [x1,x2] = x5, [x1,x3] = X6,

X2, x4] =Cx¢ (C=0o0r C=1), [x3,x4] = Axs + Bxg .

In any case A%+ B%+ C? # 0 because x; cannot belong to the 2-dimensional
centre of .
We will show that we can always make C =1 and B =0 in (4.6).

SUBCASE 2.1. If C =0 then the following basis transformation
X =x1, Xy = axy + x3,
X3 = Axp + Bxs, X4 = x4,
yields (a is any constant such that aB # A)
[X1,X5] = axs +x¢ = X5, [X1,X3] = Axs + Bxs = X,
[X2, X4] = Axs + Bxs = Xs , [X3,X4] = B(Axs + Bxg) = BXs .
From now on we may suppose that C = 1 in (4.6) and we arrive at

4.7)

(4.8)

SUBCASE 2.2: C=1,A=0. Let
Xi=x1+axy, Xp=2x—axs,
X3 = x +dx3, X4 = —x1 +dxyg,
where a,d,a+d #0, aB # 1, dB # —1. Hence
[X1,X2] = x5 + (a’B — 2a)x = Xs,
[X1,X3] = x5 + (d — a — adB)xs = X,
[X2,X4] = x5 + (d — a — adB)xs = X,
[X3,X4] = x5 + (d°B + 2d)xs = X5 + (1 — \)Xs.
Since a, d and a+d are all non-zero, X5 and X¢ are linearly independent.
Straightforward computations yield
dB +1
aB — 1
Thus we have the following alternative.

4.9)

(4.10)

A=

#0, 1
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SUBCASE 2.3.1: C=1; A, B,4A+B*+#0. Let now

X1 =x1 +txyq, Xy = xp — tx3,
@.11) 1 = X1+ Ix4 2 =X 3
X3 = x3, X4 = x4,

where ¢ = —B/2A. Hence
[X1,Xo] = (1 + A)xs + (B — 20)x6 = X5,

[X17X3] — —tAX5 + (1 - ZB)X6 - X6 3
[X2,X4] = —tAxs + (1 — tB)xg = X,

2
[X3,X4] = Axs + Bxg = aXs = ﬁi—BiXs :

(4.12)

SUBCASE 232: C = 1; A B # 0, 4A + B> = 0. The same
transformation (4.11) yields

[X1,X2] =0,

[X1,X3] = —tAxs + (1 — tB)xg = X6,
(X2, Xa] = —tAxs 4+ (1 — 1B)xg = Xe ,
[X3,X4] = Axs + Bxg = X5

(4.13)

and, after the transformation x; = X3, x, = X4, x3 = X1, x4 = X, x5 = X5,

x¢ = —Xg, we obtain (4.12) with o = 0. Anyway, we obtain the desired form
of b
4.14)  [yxl=xs, [xi,xl=x, [x,x4]=x¢, [x3,x4]=Axs.

Scaling x3, x4 by A # 0 we may suppose that A = m where m is a
square-free integer as above. |

In order to conclude the proof of the first part of the theorem we point
out an isomorphism p: h — heiz(4,,). Recall that A,, has a basis 1, x over
Q such that x> = m. Here are the matrices representing p(x;) if m # 1 (the
case m = 1 is left to the reader as an easy exercise):

0 0 0 0 0
px)=10 0 0 px2) =10 0 1], pxs)=1{0
0 0 O 0 0 0 0

0 0 0O —x O 0
pt3) =10 , pGa)=1{0 0 0}, plxe)= 1|0
0 0 0O 0 O 0

O OO

—
(@)
\_/

(4.15)

oS OO
=

SO O
O O =
N——




ON THE RATIONAL FORMS OF NILPOTENT LIE ALGEBRAS 207

Now it is evident that h ®g R is isomorphic to either heiz(R) @ hei;(R),
or heiz(R[x] /(xz)), or hei;(C) depending on the sign of m. Thus, we have
classified up to Q-isomorphism all rational forms for these 3 real Lie algebras.
By Theorem 2 these forms are non-isomorphic. The proof of the theorem is
complete. [

REMARK. It is worth mentioning that the above three real Lie algebras
are not pairwise isomorphic over R. Indeed, the centralizer of any element in
g— = beiz(C) is even dimensional over R since this algebra can be viewed
as a complex Lie algebra, whereas in both g, = heiz(R) @ heiz(R) and
go = heis(R[x]/ (x?)) there are elements with 5-dimensional centralizers. In
order to show that the last two algebras are not isomorphic we need some
more information about elements with 5-dimensional centralizers.

The centralizer C(x) will not be changed if we scale x by any A # 0 or
add to x any central element. This means that dimension of the centralizer
is a well-defined function on the projective space P(g/[g,g]) where g is
either g4 or go. Straightforward computations show that in P(go/[g0, go])
all points with 5-dimensional centralizer belong to a unique line whereas in
P(g+/[g+,9+]) the points under consideration form two disjoint lines.
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