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170 C. WUTHRICH

Comme avant, dans le cas (8,7) = (0,3): z = 48 et g = 24 . (1)
+£5 # 98" = 3 (mod 11). Bt dans le cas (8,7) = (2,0): z = +1 et
g=22-(£1)£9 (mod 11). [

7. LA JACOBIENNE DE C

Il est certainement intéressant de connaitre la jacobienne associée i la
courbe. Nous allons construire une application birationnelle

¥: C --»Jac(C) = E

définie sur Q(w) a l’aide d’une transformation de Cremona de degré 3 du
plan.
L'image de la conique B par I’application j est la droite

b:m:{)m = X1 :JCZ:O}CSCPE.
Prenons le point R=(0:0:0:1:w) € b(Q(w)) et calculons le plan tangent
aSenR:
TRS:TRQ()QTRQli {—QJX() —I—X1:0, wxl—x2:O}.

L’intersection de S avec TgS se décompose en deux droites b et e, ou la
seconde, qui correspond au diviseur exceptionnel de j au-dessus du point Py,
est décrite par les équations suivantes :

x1 —wxg =0, X —wx; =0, x4—wX3—‘(gl+ggu)2+w4)x0:O.

A ces trois équations correspondent trois cubiques du plan, passant par les
point P; et ayant un point double en P; :

Al 0 —w)(xz —y) =0, Al z—wy)(xz—y) =0,
At = gowx +(go — G1w) X’y + (—gow — gsw?® — w) %z
+ (91 + g30° + whx + (g2 — gsw) xyz
+ (g3 — gaw) xz* + (g4 — w2 + 22 = 0.
Les trois cubiques {Aj,Aj,A}} constituent une base du systéme linéaire
de telles cubiques définies sur Q(w). On peut constater que D’application
associée ¥': Pé(w) -—> Pé(w) est birationnelle car deux telles cubiques n’ont
qu’un point d’intersection hors des points P;. Elle contracte les quatre droites

P1P; en des points Q; € P2(Q(w)) et elle contracte la conique B en un
point Q7 = (0 : 0 : 1). D’autre part, elle éclate les points P;. Le diviseur
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exceptionnel au-dessus de P; est la conique B’ définie par les Q; et les
diviseurs exceptionnels au-dessus des autres points P; sont des droites.

Sous cette transformation ¥, la quintique C se simplifie en une cubique
lisse E'/Q(w) passant par les quatre points Q; pour 1 <j <5, d’équation
du style ‘

0 = (—5632 -+ 8448w + 640w? + 5184wt x> + - - - + 10247 .

En reliant les deux autres intersections de E’ avec B’, on trouve un point
T de E' défini sur Q(w) qui peut servir pour transformer E’ en une forme de
Weierstrass E (voir [Ca]), sans étre obligé de monter dans un corps encore plus
grand. L3, le miracle prédit par la théorie: E est définie sur Q (puisqu’elle
est la jacobienne de C, une courbe définie sur Q). Sans donner les détails
du calcul, je présente les résultats: 'invariant

. 3443566663693729 151009°
/7 T1289106508910 2.5 11-421- 27836461

la forme canonique

—2671,2817...

Y2 =X+ AX+B
avec

A = —452233232961724703800443015164268
B = —2199645470636900013045431798249893889294605994928 ,

la forme minimale globale de E
V=X4+X>+a, X+ ac
avec

aq = —5583126332860798812351148335361
as = —3017346324604802976330769113064479136657958145

et le conducteur arithmétique

N = 1143864722620401428256678161374838265280
=20.5.11-13%.37%2.421 -72497% . 1510092 - 27836461 .

Grice a quelques réductions, on montre que le groupe de torsion de E(Q)
est trivial. Par construction, (C, ) représente un élément d’ordre 5 du groupe

de Tate-Shafarevich III(E/Q). Si ce groupe est fini, son ordre est divisible
par 25.
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