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Comme avant, dans le cas (ß,y)(0,3) : z ±8 et 24 • (±1)
±5 ^ 9 • 84 3 (mod 11). Et dans le cas (2,0) : z ±1 et

g=22-(±1)^9 (mod 11).

7. La jacobienne de C

Il est certainement intéressant de connaître la jacobienne associée à la
courbe. Nous allons construire une application birationnelle

C --•> Jac(C) E

définie sur Q(cd) à l'aide d'une transformation de Cremona de degré 3 du
plan.

L'image de la conique B par l'application j est la droite

b =j(B) {xo xi x2 0} C S C Pq

Prenons le point R — (0 : 0 : 0 : 1 : tu) G b(Q(cu)) et calculons le plan tangent
à S en R :

TrS TRQ0n TrQi : {—loxo + x\ 0, lüxi — 0}

L'intersection de S avec TRS se décompose en deux droites b et e\, où la
seconde, qui correspond au diviseur exceptionnel de j au-dessus du point Pi,
est décrite par les équations suivantes :

X\ LOXo 0 X2 ÜJXi 0 X4 ÜJX3 (gi -f- up1 CJ^)xo 0

A ces trois équations correspondent trois cubiques du plan, passant par les
point Pi et ayant un point double en P\ :

A'0:(y-ujx)(xz- y2)0, : (z - ujy)(xz - 0,

A'2 : - go^x3 + (g0 - giu)x2y + (-g2u - g3iv2 - uj4)x2z

+ (gi+ 53w2 + uj4)xy2 + - g3u)xyz

+ (53 - 9*u)xz2 + (54 - u>)yz2 0.

Les trois cubiques {A^A'^A^} constituent une base du système linéaire
de telles cubiques définies sur Q(w). On peut constater que l'application
associée &' : Pq(w) —4 P^(w) est birationnelle car deux telles cubiques n'ont
qu'un point d'intersection hors des points P,. Elle contracte les quatre droites
P\Pj en des points Qj e P2(Q(cj)) et elle contracte la conique B en un
point <2i (0 : 0 : 1). D'autre part, elle éclate les points P,. Le diviseur
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exceptionnel au-dessus de P\ est la conique B' définie par les Q\ et les

diviseurs exceptionnels au-dessus des autres points Pj sont des droites.

Sous cette transformation $, la quintique C se simplifie en une cubique

lisse E' jQ(cj) passant par les quatre points Qj pour 1 < j < 5, d'équation

du style

0 (-5632 + 8448cj + 640cj2 + 5184o;4)x3 H + 1024 r3.

En reliant les deux autres intersections de E' avec B', on trouve un point
| T de E' défini sur Q(u) qui peut servir pour transformer E' en une forme de

j Weierstrass E (voir [Ca]), sans être obligé de monter dans un corps encore plus
j grand. Là, le miracle prédit par la théorie: E est définie sur Q (puisqu'elle
I est la jacobienne de C, une courbe définie sur Q). Sans donner les détails

du calcul, je présente les résultats: Y invariant

3443566663693729 1510093
r|_1 ooia/ — 26 /1, 2o 1 /

j
J 1289106508910 2 • 5 • 11 • 421 • 27836461

; la forme canonique

j Y2 X3 + AX +
"j avec

A -452233232961724703800443015164268

B -2199645470636900013045431798249893889294605994928

| la forme minimale globale de E

Y2 =X3 +X2 + a4X +

S avec

a4 -5583126332860798812351148335361

j a6 -3017346324604802976330769113064479136657958145

j et le conducteur arithmétique

j N=l 143864722620401428256678161374838265280

j 26 • 5 • 11 • 132 • 372 • 421 • 724972 • 1510092 • 27836461.

j Grâce à quelques réductions, on montre que le groupe de torsion de E{Q)
Jj est trivial. Par construction, (C,$) représente un élément d'ordre 5 du groupe
1 de Tate-Shafarevich III(E/Q). Si ce groupe est fini, son ordre est divisible
I par 25.
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