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#c(Fp) > p + \ -2s/p>(VÏ9 l)2 > 11

La contraction sur C peut écraser 10 de nos points lisses, mais il reste au

moins un point lisse sur C(F/;)

Si C/Fp est de genre 0, ou si elle se décompose sur F/? en ayant une

composante simple définie sur F/;, le même argument montre qu'elle a toujours

suffisamment de points pour en avoir qui soient lisses. Le seul cas où il faut

s'inquiéter c'est quand elle se décompose sur F/; en cinq droites. Mais ce cas

est exclu par notre hypothèse, car cela voudrait dire que chaque point de C

serait un point d'inflexion, et se trouverait donc sur la Hessienne H.

Pour terminer la démonstration de la proposition, il suffit donc de calculer

la résultante de H avec C, en éliminant z, ce qui donne la réduction de

244 • (4x5 - \2x4y + lOx-y ~ W + 4 y5)6 • q(x : y),

où q(x : y) est un polynôme homogène, primitif, de degré 15. Ce n'est jamais
0 modulo un premier p > 2.

6. Démonstration du cas global

PROPOSITION 6.1. La courbe C donnée par (1.1) n'a pas de point
rationnel

Preuve. On suppose que (x : y : z) est une solution rationnelle de (1.1).
On peut supposer que x, y et z sont des entiers et qu'ils n'ont pas de facteur

en commun.

Soit p un premier rationnel différent de 2 et de 11, avec p ^ ±1 (mod 11).
Alors p ne divise pas r dans la formule (4.1): sinon x — ey — x+y — 46y + 62y

serait dans pOK. Le fait que { 1,<9, Q2, <93, 94 } est une Z-base de ÖK montre
alors que p diviserait y et x + y. Puisque p ne peut pas être facteur des trois
coordonnées, on aurait donc p\z, d'où p \ f. Mais/ 16z4 ^ 0 (mod p).

De la même manière, on montre que p ne divise pas s. Donc r et .y

sont composés de facteurs premiers 2, 11 et de premiers de la forme p ± 1

(mod 11). La même conclusion est vraie pour leurs facteurs y, z, / et g.
Considérons p 2 de plus près : rappelons-nous que 2Ok est un idéal premier.
On dénote par ß la valuation de y en 2Z, et par 7 celle de z.
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On suppose dans un premier temps que 7 > 0. Alors 2fx, ce qui dit
que x- ey<£2 Ok.Ceciimplique que 24 || autrement dit que 0 < 7 < 4
et que 24 7 \\f.(Ona utilisé la notation || pour dire «divise exactement»).
Calculons / modulo 16:

f 4y2 3x2 + 4y3 x+ 2/ • 5 + 4yz • x2 + 2 5x + y2z2 + 87z3 (mod 16).

Par hypothèse, yet z sont au moins une fois divisibles par 2, le terme à
droite est donc égal à 0 modulo 16, ce qui n'est pas possible car 16\f.

Occupons-nous à présent du cas ß 0 et 7 > 0 : on a x - ey
x + y— 4 9y+ Q2y 2 ÖK,alorscomme avant 24-7 Cette fois-ci on

regarde / modulo 4 :

f2 • y4 + 2xz y2 + z2 y22 (mod 4),

puisque 2 j y.Celaveut dire que 2 || fet donc 7 3. (On a vu dans 5.1 que
derrière cela «se cache» une solution 2-adique. On ne pourrait pas l'éliminer
en considérant p2.)

Comme derniere possibilité, on considéré ß / 0 et 7 0: on voit que
x - riz x +3z - 0z£ 2 Ok(car2 \ z), alors 24"'3 || et 0 < < On a

g 12x2yz+ 4xy2z + 10y3z + 4x2z2 + lOxyz2 + yz3 + 8z4 (mod 16).

Si ß < 2, alors

1 1
j 31

1 1

4
> 24=? \9\i=\yz\2 ^ >

4
•

Si ß>2, alors 4 | g,c-à-d.
1 1 ,,14

<:
24-/3 _ s 4

•

Autrement dit, ß 2.
En résumé, il y a deux cas possibles pour (ß, 7) : soit (0,3) soit (2,0).

Pour la fin de la démonstration, on se penche sur le premier 11:

PREMIER cas : y et Z ne sont pas divisibles par 11. On sait qu'ils sont
composés de facteurs 2 et p±1 (mod 11). Si (0,3), alors y ±1
(mod 11) et z ±23 ±8 (mod 11). Leurs réductions se trouvent sur une
des deux droites l\:y 4z ou l2 :y 7z définies sur F,,. Si (ß, 7) (2,0),
on a y ±4 (mod 11) et z ±1 (mod 11). Leurs réductions se trouvent
sur les même droites. Mais ces deux droites ne coupent la courbe C/Fn en
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10 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 • 0 •
7/ —0——©— -O 0 0

6 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0

ALr —0— 0 0 0
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1 0 0 0 0 0 0 0 0 0 0 0
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Figure
La réduction de la courbe C dans le plan affine z l sur F j i

aucun point rationnel sur Fn. La figure ci-dessus présente une «image» de

la courbe dans la carte affine z 1 sur Fi i. Les points noirs sont des points
lisses et les étoiles des points singuliers de C.

DEUXIÈME CAS: z est divisible par 11. Alors 11 | z/ — 16N(x — ey),
autrement dit, x — ey — x + y — 4Oy + 92y G (6). Pour cela il faut que
x + y G 11Z, c-à-d. x —y ^ 0 (mod 11). On calcule / modulo 11, sachant

que z 0 (mod 11) :

/ 64x4 — 224x3y + 108x2y2 + 116xy3 + IO3;4 4y4 (mod 11).

Dans le cas (ß,y) (0,3), il faut que y ± 1 (mod 11) puisqu'il n'est
pas divisible par 11. D'autre part, f 4 (mod 11) devrait être le produit de
21 2 (mod 11) et de facteurs p ± 1 (mod 11). Dans le cas (^,7) (2,0),
on a aussi une contradiction: 3; ±4, / 4- 44 1 (mod 11) et

/ 24 • (=tl) d=5 (mod 11).

TROISIÈME CAS: y est divisible par 11. Alors 11 | yg -16N(x-rjz).
Pour cela il faut que x + 3z G 11Z. Cette fois-ci on considère g modulo 11,
sachant que y 0 (mod 11) et x -3z (mod 11) :

g —96x4 - 224x3z + 68x2z2 + 160xz3 - 56z4 m 9z4 (mod 11).



170 C. WUTHRICH

Comme avant, dans le cas (ß,y)(0,3) : z ±8 et 24 • (±1)
±5 ^ 9 • 84 3 (mod 11). Et dans le cas (2,0) : z ±1 et

g=22-(±1)^9 (mod 11).

7. La jacobienne de C

Il est certainement intéressant de connaître la jacobienne associée à la
courbe. Nous allons construire une application birationnelle

C --•> Jac(C) E

définie sur Q(cd) à l'aide d'une transformation de Cremona de degré 3 du
plan.

L'image de la conique B par l'application j est la droite

b =j(B) {xo xi x2 0} C S C Pq

Prenons le point R — (0 : 0 : 0 : 1 : tu) G b(Q(cu)) et calculons le plan tangent
à S en R :

TrS TRQ0n TrQi : {—loxo + x\ 0, lüxi — 0}

L'intersection de S avec TRS se décompose en deux droites b et e\, où la
seconde, qui correspond au diviseur exceptionnel de j au-dessus du point Pi,
est décrite par les équations suivantes :

X\ LOXo 0 X2 ÜJXi 0 X4 ÜJX3 (gi -f- up1 CJ^)xo 0

A ces trois équations correspondent trois cubiques du plan, passant par les
point Pi et ayant un point double en P\ :

A'0:(y-ujx)(xz- y2)0, : (z - ujy)(xz - 0,

A'2 : - go^x3 + (g0 - giu)x2y + (-g2u - g3iv2 - uj4)x2z

+ (gi+ 53w2 + uj4)xy2 + - g3u)xyz

+ (53 - 9*u)xz2 + (54 - u>)yz2 0.

Les trois cubiques {A^A'^A^} constituent une base du système linéaire
de telles cubiques définies sur Q(w). On peut constater que l'application
associée &' : Pq(w) —4 P^(w) est birationnelle car deux telles cubiques n'ont
qu'un point d'intersection hors des points P,. Elle contracte les quatre droites
P\Pj en des points Qj e P2(Q(cj)) et elle contracte la conique B en un
point <2i (0 : 0 : 1). D'autre part, elle éclate les points P,. Le diviseur
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