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166 | C. WUTHRICH

et les coefficients

/\02_67 )\1:1, )\2:

Cela nous donne la courbe C donnée par (1.1) dans le théoréme principal.
Le polyndme minimal de w est p(X) = 4 — 12X + 10X% — 7X* + 4X°,
qui est irréductible sur Q. Dans la suite on pose r := —16N(x — ey) et
s := —16 N(x — nz). Puis on constate que 1’équation (1.1) peut étre réécrite
sous chacune des deux formes suivantes:

4.1) r=—-16Nx—¢ey)=1z-f,
4.2) s=—-16Nx—nz)=y-g,

ou f et g sont des polyndmes homogénes de degré 4 sur Z.

5. DEMONSTRATION DU CAS LOCAL

PROPOSITION 5.1. La courbe C donnée par (1.1) posséde des points
lisses dans tous les complétés de Q.

Preuve. Comme le degré de C est impair, il est clair que C/R posséde un
point lisse. On commence petit a petit par les premiers nombres premiers p.

Pour p = 2: lorsque ’on remplace z par 8z dans 1’équation (1.1), on
obtient une courbe dont la réduction modulo 2 est égale a

P+ 4y 2=0.

Elle a un point lisse (0 : 1 : 1) sur F,. Ensuite, on trouve facilement des
points lisses de la réduction de C modulo p pour 2 < p < 19 : (1:1:2)
pour F3, (0 :1:3) pour Fs, (0:1:5) pour F7, (1:0:7) pour Fyy,
(0:1:1) pour Fi3 et (0:1:—-2) pour Fy7.

LEMME 52 Soit p > 19, soit C la réduction de C modulo p. On
suppose que C n’est pas une composante de sa Hessienne H. Alors C(Fp)
contient un point lisse.

Preuve. On suppose d’abord que C est irréductible. Soit & la normalisée
de C. Si elle est une courbe de genre 1, alors par le théoréme de Hasse-Weil
pour la courbe lisse projective ¢, on a
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#e(F,) >p+1-2yp> (V19— 1* > 11.

La contraction sur C peut écraser 10 de nos points lisses, mais il reste au
moins un point lisse sur a(F,,)

Si 6/Fp est de genre 0, ou si elle se décompose sur F,, en ayant une
composante simple définie sur F,, le méme argument montre qu’elle a toujours
suffisamment de points pour en avoir qui soient lisses. Le seul cas ou il faut
s’inquiéter c’est quand elle se décompose sur F,, en cinq droites. Mais ce cas
est exclu par notre hypothése, car cela voudrait dire que chaque point de C

serait un point d’inflexion, et se trouverait donc sur la Hessienne H. ]

Pour terminer la démonstration de la proposition, il suffit donc de calculer

~

la résultante de H avec C, en éliminant z, ce qui donne la réduction de
244X — 12Xy + 10y — Txy? +4y°)0 . gx vy,

ol g(x :y) est un polyndme homogene, primitif, de degré 15. Ce n’est jamais
0 modulo un premier p > 2. [

6. DEMONSTRATION DU CAS GLOBAL

PROPOSITION 6.1. La courbe C donnée par (1.1) n'a pas de point
rationnel.

Preuve. On suppose que (x:y:z) est une solution rationnelle de (1.1).
On peut supposer que x, y et z sont des entiers et qu’ils n’ont pas de facteur
en commun.

Soit p un premier rationnel différent de 2 et de 11, avec p Z +1 (mod 11).
Alors p ne divise pas r dans la formule (4.1): sinon x—ey = x+y—40y+ 6%y
serait dans pOy. Le fait que {1,6,6%,6 6*} est une Z-base de Og montre
alors que p diviserait y et x+y. Puisque p ne peut pas étre facteur des trois
coordonnées, on aurait donc p {z, d’ol p | f. Mais f = 16z* # 0 (mod p).

De la méme maniére, on montre que p ne divise pas s. Donc r et s
sont composé€s de facteurs premiers 2, 11 et de premiers de la forme p = +1
(mod 11). La méme conclusion est vraie pour leurs facteurs y, z, f et g.
Considérons p = 2 de plus prés: rappelons-nous que 20k est un idéal premier.
On dénote par 3 la valuation de y en 2Z, et par «y celle de z.
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