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166 C. WUTHRICH

et les coefficients

901 01 —3 02 § o, 04

Ao —6, Ai 1, A2 |, A3 — 1, A4 —2.

Cela nous donne la courbe C donnée par (1.1) dans le théorème principal.
Le polynôme minimal de u est p(X) 4 - 12X + 10X2 - 7X4 + 4X5,
qui est irréductible sur Q. Dans la suite on pose r := -\6N(x - ey) et
s :» — 16AÙ> - rjz). Puis on constate que l'équation (1.1) peut être réécrite
sous chacune des deux formes suivantes :

(4.1) r -\6N(x - ey) z-f,
(4.2) s -\6N(x - rjz) y • g,

où / et g sont des polynômes homogènes de degré 4 sur Z.

5. Démonstration du cas local

PROPOSITION 5.1. La courbe C donnée par (1.1) possède des points
lisses dans tous les complétés de Q.

Preuve. Comme le degré de C est impair, il est clair que C/R possède un
point lisse. On commence petit à petit par les premiers nombres premiers p.

Pour p 2: lorsque l'on remplace z par 8z dans l'équation (1.1), on
obtient une courbe dont la réduction modulo 2 est égale à

x5 + x2y3 + y5 + y4z 0

Elle a un point lisse (0 : 1 : 1) sur F2. Ensuite, on trouve facilement des

points lisses de la réduction de C modulo p pour 2 < p < 19: (1:1:2)
pour F3, (0:1:3) pour F5, (0:1:5) pour F7, (1:0:7) pour Fu,
(0:1:1) pour FB et (0 : 1 : -2) pour F17.

LEMME 5.2. Soit p > 19, soit C la réduction de C modulo p. On

suppose que C n'est pas une composante de sa Hessienne H. Alors C(¥p)
contient un point lisse.

Preuve. On suppose d'abord que C est irréductible. Soit c la normalisée
de C. Si elle est une courbe de genre 1, alors par le théorème de Hasse-Weil

pour la courbe lisse projective c, on a
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#c(Fp) > p + \ -2s/p>(VÏ9 l)2 > 11

La contraction sur C peut écraser 10 de nos points lisses, mais il reste au

moins un point lisse sur C(F/;)

Si C/Fp est de genre 0, ou si elle se décompose sur F/? en ayant une

composante simple définie sur F/;, le même argument montre qu'elle a toujours

suffisamment de points pour en avoir qui soient lisses. Le seul cas où il faut

s'inquiéter c'est quand elle se décompose sur F/; en cinq droites. Mais ce cas

est exclu par notre hypothèse, car cela voudrait dire que chaque point de C

serait un point d'inflexion, et se trouverait donc sur la Hessienne H.

Pour terminer la démonstration de la proposition, il suffit donc de calculer

la résultante de H avec C, en éliminant z, ce qui donne la réduction de

244 • (4x5 - \2x4y + lOx-y ~ W + 4 y5)6 • q(x : y),

où q(x : y) est un polynôme homogène, primitif, de degré 15. Ce n'est jamais
0 modulo un premier p > 2.

6. Démonstration du cas global

PROPOSITION 6.1. La courbe C donnée par (1.1) n'a pas de point
rationnel

Preuve. On suppose que (x : y : z) est une solution rationnelle de (1.1).
On peut supposer que x, y et z sont des entiers et qu'ils n'ont pas de facteur

en commun.

Soit p un premier rationnel différent de 2 et de 11, avec p ^ ±1 (mod 11).
Alors p ne divise pas r dans la formule (4.1): sinon x — ey — x+y — 46y + 62y

serait dans pOK. Le fait que { 1,<9, Q2, <93, 94 } est une Z-base de ÖK montre
alors que p diviserait y et x + y. Puisque p ne peut pas être facteur des trois
coordonnées, on aurait donc p\z, d'où p \ f. Mais/ 16z4 ^ 0 (mod p).

De la même manière, on montre que p ne divise pas s. Donc r et .y

sont composés de facteurs premiers 2, 11 et de premiers de la forme p ± 1

(mod 11). La même conclusion est vraie pour leurs facteurs y, z, / et g.
Considérons p 2 de plus près : rappelons-nous que 2Ok est un idéal premier.
On dénote par ß la valuation de y en 2Z, et par 7 celle de z.
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