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UNE QUINTIQUE DE GENRE 1 165

en cinq idéaux premiers distincts dans Ok tandis que les p # +1 (mod 11)
différents de 11 restent premiers. PARI-GP® trouve une base des unités modulo
torsion, a savoir: {0 —2, 6 — 3, > — 560 +5, 04 —86° +216%—200+5}.

PROPOSITION 3.1. Pour tout £ € Og avec £ ¢ (8) on a

N(€) = Ngo(€) = 1 (mod 11).

Preuve. Puisque |N(€)| = N((€)) et que (§) se factorise en idéaux
premiers, il suffit de montrer que N(p) = £1 (mod 11) pour tout idéal premier
p # (0). Soit p est au-dessus d’un premier rationnel p = +1 (mod 11) et
alors sa norme est égal a &p, soit p est de la forme pOg et dans ce cas
N(p)=p’ ==+l (mod 11). [

REMARQUE. Dans I’appendice de [Co], Daniel Coray utilise cette extension
K :Q pour construire une quintique qui contredit le principe de Hasse. Mais
elle est lisse et donc de genre 6. L’équation s’écrit

N(x + 0y) = z(Z + xz + )22 + xz + x%).

Par ailleurs, le premier contre-exemple qui est une courbe plane lisse de
degré 5 a été construit par Fujiwara dans [Fu].

4. CHOIX DE LA COURBE

La quintique C qui nous servira de contre-exemple au principe de Hasse
sera une combinaison linéaire

C=0C74+XCo+ NCi+ Co+ A3C5 + MCy.

On choisit les coefficients g; et \; tels que les termes sans z s’€crivent comme
N(x—ey) = Ng.o(x—¢€y) et que les termes sans y s’écrivent comme N(x —nz)
pour certains € et n € K. J’ai essayé avec un millier de choix différents de
(e,m) pour lesquels il existe des coefficients g; et );. Parmi ceux auxquels
ma méthode de démonstration s’applique, j’ai choisi le plus simple:

e=—14+40-0*cOf et n=-3+0¢c0%,
dont les normes sont

Nx —ey) =x —6x'y +10x°y* —x*y° — 60" +y°

N(x—n7) =x +4x*'7+25°727% =522 —2x* + 2,
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et les coefficients

/\02_67 )\1:1, )\2:

Cela nous donne la courbe C donnée par (1.1) dans le théoréme principal.
Le polyndme minimal de w est p(X) = 4 — 12X + 10X% — 7X* + 4X°,
qui est irréductible sur Q. Dans la suite on pose r := —16N(x — ey) et
s := —16 N(x — nz). Puis on constate que 1’équation (1.1) peut étre réécrite
sous chacune des deux formes suivantes:

4.1) r=—-16Nx—¢ey)=1z-f,
4.2) s=—-16Nx—nz)=y-g,

ou f et g sont des polyndmes homogénes de degré 4 sur Z.

5. DEMONSTRATION DU CAS LOCAL

PROPOSITION 5.1. La courbe C donnée par (1.1) posséde des points
lisses dans tous les complétés de Q.

Preuve. Comme le degré de C est impair, il est clair que C/R posséde un
point lisse. On commence petit a petit par les premiers nombres premiers p.

Pour p = 2: lorsque ’on remplace z par 8z dans 1’équation (1.1), on
obtient une courbe dont la réduction modulo 2 est égale a

P+ 4y 2=0.

Elle a un point lisse (0 : 1 : 1) sur F,. Ensuite, on trouve facilement des
points lisses de la réduction de C modulo p pour 2 < p < 19 : (1:1:2)
pour F3, (0 :1:3) pour Fs, (0:1:5) pour F7, (1:0:7) pour Fyy,
(0:1:1) pour Fi3 et (0:1:—-2) pour Fy7.

LEMME 52 Soit p > 19, soit C la réduction de C modulo p. On
suppose que C n’est pas une composante de sa Hessienne H. Alors C(Fp)
contient un point lisse.

Preuve. On suppose d’abord que C est irréductible. Soit & la normalisée
de C. Si elle est une courbe de genre 1, alors par le théoréme de Hasse-Weil
pour la courbe lisse projective ¢, on a
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