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164 C. WUTHRICH

Remarque. D'après le théorème de Riemann-Roch, tout diviseur de

degré 1 est linéairement équivalent à un diviseur effectif, c-à-d. à un point
rationnel. Pour éviter d'avoir de tels points sur notre courbe, il faut que
l'application deg: Div(C/Q) —» Z ait 5Z comme image.

Nous avons utilisé cela pour tamiser une certaine famille de quintiques
pour trouver notre exemple: on prend une quintique dont on a vérifié qu'elle
a des points locaux. On choisit quelques droites au hasard. L'intersection de
la quintique avec chacune des droites doit être un diviseur irréductible sur Q.
Sinon la quintique possède des points rationnels. Pour la courbe

324x5 - 36x4y-j-x3y2 + 45x2yz2 - x2z3 — xy2z2 - 9y5 + z5 0

par exemple, on ne trouve pas tout de suite un point rationnel. Mais quand on

coupe par la droite 3x — y + z 0, on trouve un polynôme qui se factorise :

9(2/ + 3yz - 3z2)(109 y3-96 + 99yz2 ~4z3),

ce qui montre qu'il y a un point rationnel quelque part.

3. Un corps de nombres

Soit C une racine primitive lleme de l'unité. On considère le corps
cyclotomique Q(C). Pour tous les résultats de ce paragraphe, je me réfère à

[CF], chap. 3. L'anneau des entiers Oq^q est égal àZ[(] et le discriminant vaut

disc(Q(0) — — 119. Le premier 11 est totalement ramifié : IIOqçq (1—C)10.

Un premier rationnel p ^ 11 se décompose en dix idéaux premiers si p 1

(mod 11), en cinq si p —I (mod 11) ; autrement il reste premier si p5 — 1

(mod 11) et dans les autres cas il se factorise en deux idéaux premiers.
Dans Q(0 il y a un sous-corps réel de degré 5, K Q(( + f), qui est le

corps fixe sous l'action de l'élément a d'ordre 2 dans Gal(Q(Q:Q). Comme
l'extension Q(0:Q est abélienne, K: Q est galoisienne. Le discriminant
disc(i^) doit diviser celui de Q(Q, ce qui entraîne que 11 est le seul premier
ramifié dans K ; il est aussi totalement ramifié. On trouve un générateur de

l'idéal au-dessus de 11Z en prenant 6 — Ç) 2 — — G ÖK.
Il est facile de calculer le polynôme minimal de 0 :

Q5 - 11#4 -h4403 — 1162 + 550 — 11 0.

De plus, l'anneau des entiers ÜK de K est égal à Z[<9]. Il est principal; un fait
que nous n'utiliserons pas. On a 11 Ok (#)5. On peut déduire de l'action de

a sur les idéaux que les premiers rationnels p ±1 (mod 11) se factorisent
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en cinq idéaux premiers distincts dans Ok tandis que les p ^ ±1 (mod 11)

différents de 11 restent premiers. PARI-GP® trouve une base des unités modulo

torsion, à savoir : {0 — 2, 0 — 3, 02 — 50 + 5, 6>4 — 8 63 + 21 02 — 20 0 + 5}

Proposition 3.1. Pour tout £ G Ok avec £ ^ (9) on a

N(0 NK:q(0 ±1 (mod 11).

Preuve. Puisque |7V(0| iV((0) et que (0 se factorise en idéaux

premiers, il suffit de montrer que N(p) ±1 (mod 11) pour tout idéal premier

| p (0), Soit p est au-dessus d'un premier rationnel p ± 1 (mod 11) et

*; alors sa norme est égal à ilzp, soit p est de la forme pOx et dans ce cas

j N(p) p5 ±1 (mod 11).

I Remarque. Dans l'appendice de [Co], Daniel Coray utilise cette extension

j K : Q pour construire une quintique qui contredit le principe de Hasse. Mais

| elle est lisse et donc de genre 6. L'équation s'écrit

^ N(x + Oy) z(z2 + xz + x2)(2z2 + xz + x2).

| Par ailleurs, le premier contre-exemple qui est une courbe plane lisse de

I degré 5 a été construit par Fujiwara dans [Fu].

j 4. Choix de la courbe

5 La quintique C qui nous servira de contre-exemple au principe de Hasse

sera une combinaison linéaire

-i C C7 + À0C0 + Ai Ci + À2C2 + À3C3 + À4C4

On choisit les coefficients gt et tels que les termes sans z s'écrivent comme
N(x — ey) NK:q(x — sy) et que les termes sans y s'écrivent comme N(x — rjz)

pour certains s et rj £ K. J'ai essayé avec un millier de choix différents de

(£,77) pour lesquels il existe des coefficients et À/. Parmi ceux auxquels
ma méthode de démonstration s'applique, j'ai choisi le plus simple:

e -l+4 e-d2eO*Ket77 -3 + 0 e

dont les normes sont

Af(x - ey) x5 — 6x4y + 10x3y2 — x2y3 — 6xy4 + y5

7V(x - rjz) x5 -j- 4x4z + 2x3z2 - 5x2z3 - 2xz4 + z5,
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