Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 47 (2001)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: UNE QUINTIQUE DE GENRE 1 QUI CONTREDIT LE PRINCIPE DE

HASSE

Autor: WUTHRICH, Christian

Kapitel: 3. Un corps de nombres

DOI: https://doi.org/10.5169/seals-65433

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

REMARQUE. D'après le théorème de Riemann-Roch, tout diviseur de degré 1 est linéairement équivalent à un diviseur effectif, c-à-d. à un point rationnel. Pour éviter d'avoir de tels points sur notre courbe, il faut que l'application deg: $\mathrm{Div}(C/\mathbf{Q}) \to \mathbf{Z}$ ait $5\mathbf{Z}$ comme image.

Nous avons utilisé cela pour tamiser une certaine famille de quintiques pour trouver notre exemple: on prend une quintique dont on a vérifié qu'elle a des points locaux. On choisit quelques droites au hasard. L'intersection de la quintique avec chacune des droites doit être un diviseur irréductible sur **Q**. Sinon la quintique possède des points rationnels. Pour la courbe

$$324x^5 - 36x^4y + x^3y^2 + 45x^2yz^2 - x^2z^3 - xy^2z^2 - 9y^5 + z^5 = 0,$$

par exemple, on ne trouve pas tout de suite un point rationnel. Mais quand on coupe par la droite 3x - y + z = 0, on trouve un polynôme qui se factorise:

$$9(2y^2 + 3yz - 3z^2)(109y^3 - 96y^2z + 99yz^2 - 4z^3)$$

ce qui montre qu'il y a un point rationnel quelque part.

3. Un corps de nombres

Soit ζ une racine primitive $11^{\text{ème}}$ de l'unité. On considère le corps cyclotomique $\mathbf{Q}(\zeta)$. Pour tous les résultats de ce paragraphe, je me réfère à [CF], chap. 3. L'anneau des entiers $\mathcal{O}_{\mathbf{Q}(\zeta)}$ est égal à $\mathbf{Z}[\zeta]$ et le discriminant vaut $\mathrm{disc}(\mathbf{Q}(\zeta)) = -11^9$. Le premier 11 est totalement ramifié: $11\mathcal{O}_{\mathbf{Q}(\zeta)} = (1-\zeta)^{10}$. Un premier rationnel $p \neq 11$ se décompose en dix idéaux premiers si $p \equiv 1 \pmod{11}$, en cinq si $p \equiv -1 \pmod{11}$; autrement il reste premier si $p^5 \equiv -1 \pmod{11}$ et dans les autres cas il se factorise en deux idéaux premiers.

Dans $\mathbf{Q}(\zeta)$ il y a un sous-corps réel de degré 5, $K = \mathbf{Q}(\zeta + \bar{\zeta})$, qui est le corps fixe sous l'action de l'élément σ d'ordre 2 dans $\mathrm{Gal}(\mathbf{Q}(\zeta):\mathbf{Q})$. Comme l'extension $\mathbf{Q}(\zeta):\mathbf{Q}$ est abélienne, $K:\mathbf{Q}$ est galoisienne. Le discriminant $\mathrm{disc}(K)$ doit diviser celui de $\mathbf{Q}(\zeta)$, ce qui entraîne que 11 est le seul premier ramifié dans K; il est aussi totalement ramifié. On trouve un générateur de l'idéal au-dessus de 11 \mathbf{Z} en prenant $\theta = N_{\mathbf{Q}(\zeta):K}(1-\zeta) = 2-\zeta-\bar{\zeta} \in \mathcal{O}_K$. Il est facile de calculer le polynôme minimal de θ :

$$\theta^5 - 11\theta^4 + 44\theta^3 - 77\theta^2 + 55\theta - 11 = 0.$$

De plus, l'anneau des entiers \mathcal{O}_K de K est égal à $\mathbb{Z}[\theta]$. Il est principal; un fait que nous n'utiliserons pas. On a $11\mathcal{O}_K = (\theta)^5$. On peut déduire de l'action de σ sur les idéaux que les premiers rationnels $p \equiv \pm 1 \pmod{11}$ se factorisent

en cinq idéaux premiers distincts dans \mathcal{O}_K tandis que les $p \not\equiv \pm 1 \pmod{11}$ différents de 11 restent premiers. PARI- GP^{\circledR} trouve une base des unités modulo torsion, à savoir: $\{\theta-2, \theta-3, \theta^2-5\theta+5, \theta^4-8\theta^3+21\theta^2-20\theta+5\}$.

PROPOSITION 3.1. Pour tout $\xi \in \mathcal{O}_K$ avec $\xi \notin (\theta)$ on a

$$N(\xi) = N_{K:\mathbf{Q}}(\xi) \equiv \pm 1 \pmod{11}$$
.

Preuve. Puisque $|N(\xi)| = N((\xi))$ et que (ξ) se factorise en idéaux premiers, il suffit de montrer que $N(\mathfrak{p}) \equiv \pm 1 \pmod{11}$ pour tout idéal premier $\mathfrak{p} \neq (\theta)$. Soit \mathfrak{p} est au-dessus d'un premier rationnel $p \equiv \pm 1 \pmod{11}$ et alors sa norme est égal à $\pm p$, soit \mathfrak{p} est de la forme $p\mathcal{O}_K$ et dans ce cas $N(\mathfrak{p}) = p^5 \equiv \pm 1 \pmod{11}$. \square

REMARQUE. Dans l'appendice de [Co], Daniel Coray utilise cette extension $K: \mathbf{Q}$ pour construire une quintique qui contredit le principe de Hasse. Mais elle est lisse et donc de genre 6. L'équation s'écrit

$$N(x + \theta y) = z(z^2 + xz + x^2)(2z^2 + xz + x^2).$$

Par ailleurs, le premier contre-exemple qui est une courbe plane lisse de degré 5 a été construit par Fujiwara dans [Fu].

4. CHOIX DE LA COURBE

La quintique C qui nous servira de contre-exemple au principe de Hasse sera une combinaison linéaire

$$C = C_7 + \lambda_0 C_0 + \lambda_1 C_1 + \lambda_2 C_2 + \lambda_3 C_3 + \lambda_4 C_4.$$

On choisit les coefficients g_i et λ_i tels que les termes sans z s'écrivent comme $N(x-\varepsilon y)=N_{K:\mathbf{Q}}(x-\varepsilon y)$ et que les termes sans y s'écrivent comme $N(x-\eta z)$ pour certains ε et $\eta\in K$. J'ai essayé avec un millier de choix différents de (ε,η) pour lesquels il existe des coefficients g_i et λ_i . Parmi ceux auxquels ma méthode de démonstration s'applique, j'ai choisi le plus simple:

$$\varepsilon = -1 + 4\theta - \theta^2 \in \mathcal{O}_K^*$$
 et $\eta = -3 + \theta \in \mathcal{O}_K^*$,

dont les normes sont

$$N(x - \varepsilon y) = x^5 - 6x^4y + 10x^3y^2 - x^2y^3 - 6xy^4 + y^5$$

$$N(x - \eta z) = x^5 + 4x^4z + 2x^3z^2 - 5x^2z^3 - 2xz^4 + z^5,$$