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UNE QUINTIQUE DE GENRE 1
QUI CONTREDIT LE PRINCIPE DE HASSE

par Christian WUTHRICH

1. INTRODUCTION

Le sujet de ce travail est de construire un contre-exemple au principe de
Hasse (voir par exemple [CCS]) pour la famille des quintiques de genre 1.

THEOREME 1.1. La courbe projective plane C/Q, de genre géométrigue 1,
ayant cing points doubles et donnée par 1’équation
(1.1) X 4+ y(—6x* + 103y — x3? —6xy° +yY
+z(@x*+2x37 - 522 - 23 + )

1
+ Eyz(~224x3 + 108 x*y + 116 xy* + 10y® + 68 x’¢

— 166 xyz — 80y*z + 160 x7% + 81 yz> — 567°) = 0,

i posséde des points lisses dans tous les complétés de Q, mais aucun point

rationnel.

Dans les années 40, Lind [Li] et Reichardt [Re] ont montré par des

| contre-exemples que le principe ne s’applique pas aux courbes de genre 1.

La cubique diagonale découverte par Selmer [Se], 3x + 4y> + 573 = 0, est
le contre-exemple le plus connu. Aujourd’hui, on connait méme des familles
algebriques dont toutes les courbes sont de genre 1 et contredisent le principe
de Hasse (voir [CP]).

Apres avoir trouvé cette courbe et sa jacobienne, j’ai pris connaissance des

travaux de T. A. Fisher, qui dans sa thése [Fi] construit d’autres exemples de
quintiques qui contredisent le principe de Hasse par une méthode différente de
& celle utilisée ici. Il obtient ses exemples comme torseurs de courbes elliptiques,
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mais il doit apparemment se restreindre a des courbes elliptiques avec 5-torsion
sur Q.

La premiere partie de cet article décrit la méthode pour construire les
courbes qui satisfont la condition géométrique, en utilisant des surfaces de Del
Pezzo de degré 4. Apres la construction du contre-exemple, la démonstration
du théoreme est expliquée en détail. J’aimerais attirer 1’attention sur la
démonstration du cas global qui contient des éléments originaux, comme
I'examen simultané — pour une méme équation — de deux éléments qui sont
des normes: voir (4.1) et (4.2). Entirement programmée sur ordinateur, elle
a eté appliquée a des familles de courbes pour tamiser un contre-exemple.
La fin de I’article est réservée au calcul de la jacobienne E associée 2 cette
quintique qui nous sert de contre-exemple. La normalisée de C représente
alors un élément d’ordre 5 dans le groupe de Tate-Shafarevich III(E /Q).

2. QUINTIQUES PLANES DE GENRE 1

Soit w un nombre algébrique de polyndme minimal
PR =g+ nX+pX+gX +gX +X°

sur Q. Soit Py = (1 : w: w?) € P2(Q(w)) et soient P,, P3, P4 et Ps ses
conjugués sur Q. On introduit la notation B pour la conique xz — y?> = 0
qui est définie par les P;. Nous allons chercher toutes les quintiques C/Q du
plan ayant des points doubles en Py, P,, P3, P4, Ps. Pour cela nous considérons
le systeme linéaire complet des cubiques passant par les points P;. Prenons
comme base les cubiques A;/Q suivantes :

Ag: x(xz—y) =0, Az yoz—y)=0, Ay z(z—y) =0,
Asz: gox3+91x2y+gzx2z+g3xyz+g4xz2+yz2:O,
Ay: 90x2y+91x22+923€y2+93x22+g4yZ2-|—z3:O.

Ceci donne une application birationnelle j de PzQ dans une surface S de Del
Pezzo de degré 4 dans P}y, isomorphe au plan éclaté en les cinq points P;,
voir [Bel].

Un petit calcul de syzygies montre que S est égale a ’intersection compléte
des deux quadriques

. _ 2 2
Qo: XoXs — X1X3 = g1 X5 + g3 XoX2 + X;

. 2 2
Q1 XoX3 — X1X4 = Go Xy + G2 XoX2 + Ga X5

définies sur Q.
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I’intersection de S avec une quadrique Q qui ne contient pas la surface
se contracte sur P? en une sextique ayant des points doubles dans les cing
points P;. On prend une droite du plan, par exemple x =0, paramétrée par
(s 1 1) — (0 :s:1). Son image sur la surface § est une cubique gauche h
paramétrée par -

(s:1)—(0: —5% =52t st g45t2 + 7).

On cherche toutes les quadriques de P* qui contiennent cette cubique gauche
h sans contenir toute la surface S. Une telle quadrique coupe la surface le
long de h et d’une courbe dont la contraction sur le plan est une quintique
ayant un point double en chacun des points P;. On n’a pas de peine a trouver
déja cinq quadriques dégénérées de la forme xox; = 0 pour 0 < i < 4. Les
quintiques correspondantes s’écrivent comme

C,=A;+B pour 0<i<4.

De plus, on trouve trois cones quadratiques de sommet (1 : 0: 0 : 0 : 0),
au-dessus de trois quadriques dans I’hyperplan donné par 1’équation xo = 0 :

X1X3 —i—x% =0, xix4—xx3 —gax1x3 =0, xox4 +x§ — gaxpx3 = 0.
Voici les quintiques associées :
C-- ) 2 2 2 2 3\
st (2 =y )NGgoxy+gxy +gxyz+g3yz+gayy +27) =0,

Co: (xz — Y (—g0gax™y — gox°z + (go — 9194) Xy* — G2g4 Xy2
— X7+ (92 — 9394) Y2 — g4 ¥Z* — ga2) = 0,

Cr: gox + 29091 X'y + 29092 X*z + g7 ©Y* + 2(g192 + 0g3) ¥'yz
+ (g5 + 9094) X7 + (29193 + Goga) X*¥’z
+ (g0 + 29293 + 9198 XyZ + (g1 + 294 X°2 + (—go + g194) Xy°7
+ (g1 + g5 + 9298 xy°2 + Bg2 + 9394) XyZ° + g3 x2°*
+ (=2 + B39 YT + (g3 + g)Y’2 +20y7 +2 = 0.

On voit que les équations de Cs et Cg sont des combinaisons linéaires des
équations de Cp, C, et Cy4. Les quintiques {Cy, Cy,C,,C3,Cy,C7} forment
une base du systeme des quintiques du plan ayant des points doubles en
Py,...,Ps; on vérifie qu’elles sont indépendantes et que la dimension du
systetme est égale a (5;“2) — 3.5 =6, car les conditions imposées par les
points P; sont indépendantes.
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REMARQUE. D’aprés le théoreme de Riemann-Roch, tout diviseur de
degré 1 est linéairement équivalent & un diviseur effectif, c-a-d. 4 un point
rationnel. Pour éviter d’avoir de tels points sur notre courbe, il faut que
’application deg: Div(C/Q) — Z ait 5Z comme image.

Nous avons utilisé cela pour tamiser une certaine famille de quintiques
pour trouver notre exemple: on prend une quintique dont on a vérifié qu’elle
a des points locaux. On choisit quelques droites au hasard. L’intersection de
la quintique avec chacune des droites doit étre un diviseur irréductible sur Q.
Sinon la quintique posséde des points rationnels. Pour la courbe

32450 — 36x4y + X2y + 45x*yz* — x*7° — X7 —9y +2 =0,

par exemple, on ne trouve pas tout de suite un point rationnel. Mais quand on
coupe par la droite 3x —y +z =0, on trouve un polynéme qui se factorise :

92y* +3yz —322)(109y> — 96’z + 99y7> — 47°),

ce qui montre qu’il y a un point rationnel quelque part.

3. UN CORPS DE NOMBRES

Soit ¢ une racine primitive 11°™ de I’unité. On considére le corps
cyclotomique Q(¢). Pour tous les résultats de ce paragraphe, je me réfere a
[CF], chap. 3. L’anneau des entiers Ogq¢) est égal a Z[(] et le discriminant vaut
disc(Q(¢)) = —11°. Le premier 11 est totalement ramifié: 110gy = (1-¢ e,
Un premier rationnel p # 11 se décompose en dix idéaux premiers si p =1
(mod 11), en cinq si p = —1 (mod 11) ; autrement il reste premier si p° = —
(mod 11) et dans les autres cas il se factorise en deux idéaux premiers.

Dans Q(¢) il y a un sous-corps réel de degré 5, K = Q(¢ 4 (), qui est le
corps fixe sous I’action de I’élément o d’ordre 2 dans Gal(Q({):Q). Comme
I’extension Q(():Q est abélienne, K:Q est galoisienne. Le discriminant
disc(K) doit diviser celui de Q({), ce qui entraine que 11 est le seul premier
ramifié dans K ; il est aussi totalement ramifi€. On trouve un générateur de
I’idéal au-dessus de 11Z en prenant 6 = Noeyx(1 —¢) =2~ —( € Og.
Il est facile de calculer le polyndme minimal de 6 :

6° — 1160* + 440> — 776> +550 — 11 = 0.

De plus, ’anneau des entiers O de K est égal a Z[f]. 1l est principal ; un fait
que nous n’utiliserons pas. On a 110k = (). On peut déduire de I’action de
o sur les idéaux que les premiers rationnels p = 4+1 (mod 11) se factorisent
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en cinq idéaux premiers distincts dans Ok tandis que les p # +1 (mod 11)
différents de 11 restent premiers. PARI-GP® trouve une base des unités modulo
torsion, a savoir: {0 —2, 6 — 3, > — 560 +5, 04 —86° +216%—200+5}.

PROPOSITION 3.1. Pour tout £ € Og avec £ ¢ (8) on a

N(€) = Ngo(€) = 1 (mod 11).

Preuve. Puisque |N(€)| = N((€)) et que (§) se factorise en idéaux
premiers, il suffit de montrer que N(p) = £1 (mod 11) pour tout idéal premier
p # (0). Soit p est au-dessus d’un premier rationnel p = +1 (mod 11) et
alors sa norme est égal a &p, soit p est de la forme pOg et dans ce cas
N(p)=p’ ==+l (mod 11). [

REMARQUE. Dans I’appendice de [Co], Daniel Coray utilise cette extension
K :Q pour construire une quintique qui contredit le principe de Hasse. Mais
elle est lisse et donc de genre 6. L’équation s’écrit

N(x + 0y) = z(Z + xz + )22 + xz + x%).

Par ailleurs, le premier contre-exemple qui est une courbe plane lisse de
degré 5 a été construit par Fujiwara dans [Fu].

4. CHOIX DE LA COURBE

La quintique C qui nous servira de contre-exemple au principe de Hasse
sera une combinaison linéaire

C=0C74+XCo+ NCi+ Co+ A3C5 + MCy.

On choisit les coefficients g; et \; tels que les termes sans z s’€crivent comme
N(x—ey) = Ng.o(x—¢€y) et que les termes sans y s’écrivent comme N(x —nz)
pour certains € et n € K. J’ai essayé avec un millier de choix différents de
(e,m) pour lesquels il existe des coefficients g; et );. Parmi ceux auxquels
ma méthode de démonstration s’applique, j’ai choisi le plus simple:

e=—14+40-0*cOf et n=-3+0¢c0%,
dont les normes sont

Nx —ey) =x —6x'y +10x°y* —x*y° — 60" +y°

N(x—n7) =x +4x*'7+25°727% =522 —2x* + 2,
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et les coefficients

/\02_67 )\1:1, )\2:

Cela nous donne la courbe C donnée par (1.1) dans le théoréme principal.
Le polyndme minimal de w est p(X) = 4 — 12X + 10X% — 7X* + 4X°,
qui est irréductible sur Q. Dans la suite on pose r := —16N(x — ey) et
s := —16 N(x — nz). Puis on constate que 1’équation (1.1) peut étre réécrite
sous chacune des deux formes suivantes:

4.1) r=—-16Nx—¢ey)=1z-f,
4.2) s=—-16Nx—nz)=y-g,

ou f et g sont des polyndmes homogénes de degré 4 sur Z.

5. DEMONSTRATION DU CAS LOCAL

PROPOSITION 5.1. La courbe C donnée par (1.1) posséde des points
lisses dans tous les complétés de Q.

Preuve. Comme le degré de C est impair, il est clair que C/R posséde un
point lisse. On commence petit a petit par les premiers nombres premiers p.

Pour p = 2: lorsque ’on remplace z par 8z dans 1’équation (1.1), on
obtient une courbe dont la réduction modulo 2 est égale a

P+ 4y 2=0.

Elle a un point lisse (0 : 1 : 1) sur F,. Ensuite, on trouve facilement des
points lisses de la réduction de C modulo p pour 2 < p < 19 : (1:1:2)
pour F3, (0 :1:3) pour Fs, (0:1:5) pour F7, (1:0:7) pour Fyy,
(0:1:1) pour Fi3 et (0:1:—-2) pour Fy7.

LEMME 52 Soit p > 19, soit C la réduction de C modulo p. On
suppose que C n’est pas une composante de sa Hessienne H. Alors C(Fp)
contient un point lisse.

Preuve. On suppose d’abord que C est irréductible. Soit & la normalisée
de C. Si elle est une courbe de genre 1, alors par le théoréme de Hasse-Weil
pour la courbe lisse projective ¢, on a
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#e(F,) >p+1-2yp> (V19— 1* > 11.

La contraction sur C peut écraser 10 de nos points lisses, mais il reste au
moins un point lisse sur a(F,,)

Si 6/Fp est de genre 0, ou si elle se décompose sur F,, en ayant une
composante simple définie sur F,, le méme argument montre qu’elle a toujours
suffisamment de points pour en avoir qui soient lisses. Le seul cas ou il faut
s’inquiéter c’est quand elle se décompose sur F,, en cinq droites. Mais ce cas
est exclu par notre hypothése, car cela voudrait dire que chaque point de C

serait un point d’inflexion, et se trouverait donc sur la Hessienne H. ]

Pour terminer la démonstration de la proposition, il suffit donc de calculer

~

la résultante de H avec C, en éliminant z, ce qui donne la réduction de
244X — 12Xy + 10y — Txy? +4y°)0 . gx vy,

ol g(x :y) est un polyndme homogene, primitif, de degré 15. Ce n’est jamais
0 modulo un premier p > 2. [

6. DEMONSTRATION DU CAS GLOBAL

PROPOSITION 6.1. La courbe C donnée par (1.1) n'a pas de point
rationnel.

Preuve. On suppose que (x:y:z) est une solution rationnelle de (1.1).
On peut supposer que x, y et z sont des entiers et qu’ils n’ont pas de facteur
en commun.

Soit p un premier rationnel différent de 2 et de 11, avec p Z +1 (mod 11).
Alors p ne divise pas r dans la formule (4.1): sinon x—ey = x+y—40y+ 6%y
serait dans pOy. Le fait que {1,6,6%,6 6*} est une Z-base de Og montre
alors que p diviserait y et x+y. Puisque p ne peut pas étre facteur des trois
coordonnées, on aurait donc p {z, d’ol p | f. Mais f = 16z* # 0 (mod p).

De la méme maniére, on montre que p ne divise pas s. Donc r et s
sont composé€s de facteurs premiers 2, 11 et de premiers de la forme p = +1
(mod 11). La méme conclusion est vraie pour leurs facteurs y, z, f et g.
Considérons p = 2 de plus prés: rappelons-nous que 20k est un idéal premier.
On dénote par 3 la valuation de y en 2Z, et par «y celle de z.
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On suppose dans un premier temps que (3, v > 0. Alors 21 x, ce qui dit
que x — ey ¢ 20g. Ceci implique que 24 | 7, autrement dit que 0 < v < 4
et que 277 || . (On a utilisé la notation | pour dire «divise exactement»).
Calculons f modulo 16: |

f=47 3 +4° -X+2y4-5+4yz-x2+2y2z-5x+y2z2+8yz3 (mod 16).

Par hypothése, y et z sont au moins une fois divisibles par 2, le terme a
droite est donc égal 2 0 modulo 16, ce qui n’est pas possible car 161 f.

Occupons-nous a présent du cas 8 = 0 et v >0:0nax—¢gy =
x+y—4y + 0% ¢ 20k, alors comme avant 24=7 || f. Cette fois-ci on
regarde f modulo 4:

fEQ-y4+2xz-y2+z2-y252 (mod 4),

puisque 2 {y. Cela veut dire que 2 || f et donc v = 3. (On a vu dans 5.1 que
derriere cela «se cache» une solution 2-adique. On ne pourrait pas 1’éliminer
en considérant p = 2.)

Comme derniere possibilité, on considére B>0cety=0: on voit que
Xx—mz=x+3z—0z¢ 20k (car 21{z), alors 2* P [g et 0< B<4.On a

g = 12x°yz + dxy*7 + 10y°z + 4x%7% + 10xyz> + yz° + 87 (mod 16).

Si B < 2, alors
1

2= 38~

ENJI

4~ 94=F ~ lgl, = \yz
Si 8> 2, alors 4] g, c-a-d.

1 1 1
1735 = 9], < 1
Autrement dit, § = 2.
En résumé, il y a deux cas possibles pour (B,fy): soit (0,3) soit (2,0).

Pour la fin de la démonstration, on se penche sur le premier p = 11 :

PREMIER CAS: y et z ne sont pas divisibles par 11. On sait qu’ils sont
composés de facteurs 2 et p = +1 (mod 11). Si (8, v) = (0,3), alors y = +1
(mod 11) et z = £2° = +8 (mod 11). Leurs réductions se trouvent sur une
des deux droites /;: y = 4z ou l,: y = 7z définies sur Fy;. Si B,v) =(2,0),
onay==4 (mod1l) et z = =+1 (mod 11). Leurs réductions se trouvent
sur les méme droites. Mais ces deux droites ne coupent la courbe 6/F11 en
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FIGURE

La réduction de la courbe C dans le plan affine z =1 sur Fy

aucun point rationnel sur Fy;. La figure ci-dessus présente une «image» de
la courbe dans la carte affine z =1 sur F;;. Les points noirs sont des points
lisses et les €toiles des points singuliers de C.

DEUXIEME CAS: z est divisible par 11. Alors 11 | zf = —16N(x — €y),
autrement dit, x — ey = x +y — 40y + 6%y € (). Pour cela il faut que
x+ye€llZ, c-a-d. x=—y # 0 (mod 11). On calcule f modulo 11, sachant
que z=0 (mod 11):

f=064x" —224x°y +108x%y* + 116 xy° + 10y* = 4y* (mod 11).

Dans le cas (8,7) = (0,3), il faut que y = +1 (mod 11) puisqu’il n’est
pas divisible par 11. D’autre part, f =4 (mod 11) devrait étre le produit de
2! =2 (mod 11) et de facteurs p = +1 (mod 11). Dans le cas (B,7) =(2,0),
on a aussi une contradiction: y = +4, f = 4-4* = 1 (mod 11) et
f=2%(£1) =45 (mod 11).

TROISIEME CAS: y est divisible par 11. Alors 11 | yg = —16N(x — nz).
Pour cela il faut que x + 3z € 11Z. Cette fois-ci on considére g modulo 11,
sachant que y =0 (mod 11) et x = —3z (mod 11):

g=-96x"—224x°7 + 68x’2* 4+ 160xz° — 562 = 974 (mod 11).
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Comme avant, dans le cas (8,7) = (0,3): z = 48 et g = 24 . (1)
+£5 # 98" = 3 (mod 11). Bt dans le cas (8,7) = (2,0): z = +1 et
g=22-(£1)£9 (mod 11). [

7. LA JACOBIENNE DE C

Il est certainement intéressant de connaitre la jacobienne associée i la
courbe. Nous allons construire une application birationnelle

¥: C --»Jac(C) = E

définie sur Q(w) a l’aide d’une transformation de Cremona de degré 3 du
plan.
L'image de la conique B par I’application j est la droite

b:m:{)m = X1 :JCZ:O}CSCPE.
Prenons le point R=(0:0:0:1:w) € b(Q(w)) et calculons le plan tangent
aSenR:
TRS:TRQ()QTRQli {—QJX() —I—X1:0, wxl—x2:O}.

L’intersection de S avec TgS se décompose en deux droites b et e, ou la
seconde, qui correspond au diviseur exceptionnel de j au-dessus du point Py,
est décrite par les équations suivantes :

x1 —wxg =0, X —wx; =0, x4—wX3—‘(gl+ggu)2+w4)x0:O.

A ces trois équations correspondent trois cubiques du plan, passant par les
point P; et ayant un point double en P; :

Al 0 —w)(xz —y) =0, Al z—wy)(xz—y) =0,
At = gowx +(go — G1w) X’y + (—gow — gsw?® — w) %z
+ (91 + g30° + whx + (g2 — gsw) xyz
+ (g3 — gaw) xz* + (g4 — w2 + 22 = 0.
Les trois cubiques {Aj,Aj,A}} constituent une base du systéme linéaire
de telles cubiques définies sur Q(w). On peut constater que D’application
associée ¥': Pé(w) -—> Pé(w) est birationnelle car deux telles cubiques n’ont
qu’un point d’intersection hors des points P;. Elle contracte les quatre droites

P1P; en des points Q; € P2(Q(w)) et elle contracte la conique B en un
point Q7 = (0 : 0 : 1). D’autre part, elle éclate les points P;. Le diviseur
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exceptionnel au-dessus de P; est la conique B’ définie par les Q; et les
diviseurs exceptionnels au-dessus des autres points P; sont des droites.

Sous cette transformation ¥, la quintique C se simplifie en une cubique
lisse E'/Q(w) passant par les quatre points Q; pour 1 <j <5, d’équation
du style ‘

0 = (—5632 -+ 8448w + 640w? + 5184wt x> + - - - + 10247 .

En reliant les deux autres intersections de E’ avec B’, on trouve un point
T de E' défini sur Q(w) qui peut servir pour transformer E’ en une forme de
Weierstrass E (voir [Ca]), sans étre obligé de monter dans un corps encore plus
grand. L3, le miracle prédit par la théorie: E est définie sur Q (puisqu’elle
est la jacobienne de C, une courbe définie sur Q). Sans donner les détails
du calcul, je présente les résultats: 'invariant

. 3443566663693729 151009°
/7 T1289106508910 2.5 11-421- 27836461

la forme canonique

—2671,2817...

Y2 =X+ AX+B
avec

A = —452233232961724703800443015164268
B = —2199645470636900013045431798249893889294605994928 ,

la forme minimale globale de E
V=X4+X>+a, X+ ac
avec

aq = —5583126332860798812351148335361
as = —3017346324604802976330769113064479136657958145

et le conducteur arithmétique

N = 1143864722620401428256678161374838265280
=20.5.11-13%.37%2.421 -72497% . 1510092 - 27836461 .

Grice a quelques réductions, on montre que le groupe de torsion de E(Q)
est trivial. Par construction, (C, ) représente un élément d’ordre 5 du groupe

de Tate-Shafarevich III(E/Q). Si ce groupe est fini, son ordre est divisible
par 25.




172

C. WUTHRICH

REMERCIEMENTS.  Je tiens & exprimer mes plus vifs remerciements 2
Sylvia Guibert, a Christian Liedtke, aux fréres Bartholdi et surtout aux
professeurs Dino Lorenzini et Daniel Coray.

Les calculs monstrueux avec des milliers de polynémes ont été faits par
Mathematica® et PARI-GP®.

[Be]
[Ca]
[CF]

[CCS]

[CP]
[Co]
[Fi]
[Fu]
[Li]
[Re]

[Se]

REFERENCES

BEAUVILLE, A. Surfaces algébriques complexes. Astérisque 54, 1978.
CASSELS, J.W.S. Lectures on Elliptic Curves. Cambridge Univ. Press, 1991.

CASSELS, J. W.S. et A. FROHLICH. Algebraic Number Theory. Academic Press,
London, 1967.

COLLIOT-THELENE, J.-L., D. CORAY et J.-J. SANSUC. Descente et principe de
Hasse pour certaines variétés rationnelles. J. reine angew. Math. 320

(1980), 150-191.

COLLIOT-THELENE, J.-L. et B. POONEN. Algebraic families of nonzero elements
of the Shafarevich-Tate group. J. Amer. Math. Soc. 13 (2000), 83-99.

CorAY, D.F. Arithmetic on Cubic Surfaces. PhD thesis. University of
Cambridge, 1974.

FISHER, T. A. On 5 and 7 Descents for Elliptic Curves. PhD thesis. University
of Cambridge, 2000.

FUJIWARA, M. Hasse principle in algebraic equations. Acta Arith. 22 (1972/73),
267-276.

LIND, C.-E. Untersuchungen iiber die rationalen Punkte der ebenen kubischen
Kurven vom Geschlecht Eins. PhD thesis. University of Uppsala, 1940.

REICHARDT, H. Einige im Kleinen iiberall losbare, im GroBen unlosbare
diophantische Gleichungen. J. reine angew. Math. 184 (1942), 12-18.

SELMER, E. The diophantine equation aX® + bY> + ¢Z®> = 0. Acta Math. 85
(1951), 203-362.

(Regu le 22 janvier 2001)

Christian Wuthrich

Section de Mathématiques

Case postale 240

CH-1211 Geneve 24

Suisse

e-mail : christian.wuthrich@math.unige.ch



	UNE QUINTIQUE DE GENRE 1 QUI CONTREDIT LE PRINCIPE DE HASSE
	1. Introduction
	2. Quintiques planes de genre 1
	3. Un corps de nombres
	4. Choix de la courbe
	5. DÉMONSTRATION DU CAS LOCAL
	6. DÉMONSTRATION DU CAS GLOBAL
	7. La jacobienne de C
	...


