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UNE QUINTIQUE DE GENRE 1

QUI CONTREDIT LE PRINCIPE DE HASSE

par Christian WUTHRICH

|

;; 1. Introduction

4
jjj Le sujet de ce travail est de construire un contre-exemple au principe de
I Hasse (voir par exemple [CCS]) pour la famille des quintiques de genre 1.

| THÉORÈME 1.1. La courbe projective plane C/Q, de genre géométrique 1,

I ayant cinq points doubles et donnée par l'équation

(1.1) x5 + y(—6x4 + 10x3y — x2y2 — 6xy3 + y4)

fi + z (4x4 + 2x3z — 5 x2z2 — 2xz3 + z4)
II 1

| + —yz(-224x3+ 108 x2y+ 116xy2 + lOy3 +68 x2z

I - 166 xyz-80y2z+160 xz2 + 81 yz2 - 56 z3) 0,

4 possède des points lisses dans tous les complétés de Q, mais aucun point
rationnel.

Dans les années 40, Lind [Li] et Reichardt [Re] ont montré par des
I contre-exemples que le principe ne s'applique pas aux courbes de genre 1.

j La cubique diagonale découverte par Selmer [Se], 3x3 + 4y3 + 5^3 =0, est
le contre-exemple le plus connu. Aujourd'hui, on connaît même des familles
algébriques dont toutes les courbes sont de genre 1 et contredisent le principe
de Hasse (voir [CP]).

| j Après avoir trouvé cette courbe et sa jacobienne, j'ai pris connaissance des
h travaux de T. A. Fisher, qui dans sa thèse [Fi] construit d'autres exemples de

It

quintiques qui contredisent le principe de Hasse par une méthode différente de
celle utilisée ici. Il obtient ses exemples comme torseurs de courbes elliptiques,
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mais il doit apparemment se restreindre à des courbes elliptiques avec 5-torsion
sur Q.

La première partie de cet article décrit la méthode pour construire les
courbes qui satisfont la condition géométrique, en utilisant des surfaces de Del
Pezzo de degré 4. Après la construction du contre-exemple, la démonstration
du théorème est expliquée en détail. J'aimerais attirer l'attention sur la
démonstration du cas global qui contient des éléments originaux, comme
l'examen simultané - pour une même équation - de deux éléments qui sont
des normes: voir (4.1) et (4.2). Entièrement programmée sur ordinateur, elle
a été appliquée à des familles de courbes pour tamiser un contre-exemple.
La fin de l'article est réservée au calcul de la jacobienne E associée à cette
quintique qui nous sert de contre-exemple. La normalisée de C représente
alors un élément d'ordre 5 dans le groupe de Tate-Shafarevich U1(E/Q).

2. Quintiques planes de genre 1

Soit lu un nombre algébrique de polynôme minimal

PQO go + g\ X + g2 X2 + g2 X3 + #4 X4 + X5

sur Q. Soit Pi — (1 : u : uj2) e P2(Q(co)) et soient P2, P3, P4 et P5 ses

conjugués sur Q. On introduit la notation B pour la conique xz - y2 0

qui est définie par les Pt. Nous allons chercher toutes les quintiques C/Q du
plan ayant des points doubles en Pi,^2,^3,^4,^5 • Pour cela nous considérons
le système linéaire complet des cubiques passant par les points Pi. Prenons

comme base les cubiques A//Q suivantes:

A0 : x(xz - y2) 0, Ai : y(xz - y2) 0, A2 : z(xz - y2) 0,
^3: 9ox3 + gix2y + g2x2z + gsxyz + g4xz2 +yz2 0,
A4: go*2y + g\x2z + g2xyz + g3Xz2 + ^yz2 + z3 =0.

Ceci donne une application birationnelle j de Pq dans une surface S de Del
Pezzo de degré 4 dans Pq, isomorphe au plan éclaté en les cinq points Pt,
voir [Be].

Un petit calcul de syzygies montre que S est égale à l'intersection complète
des deux quadriques

Qo : X0X4 - *1*3 ~ 9i Xq g3 x0x2 + x\

Si : X2*3 - X\X4 g0 xl + g2 x0x2 + #4 x\

définies sur Q.
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L'intersection de S avec une quadrique Q qui ne contient pas la surface

se contracte sur P2 en une sextique ayant des points doubles dans les cinq

points Pi. On prend une droite du plan, par exemple x 0, paramétrée par

(s : t) (0 : ^ : t). Son image sur la surface S est une cubique gauche h

paramétrée par

(s :t)^ (0 : -s3 : -s2t : st2 : g^st2 + t3).

On cherche toutes les quadriques de P4 qui contiennent cette cubique gauche

h sans contenir toute la surface S. Une telle quadrique coupe la surface le

long de h et d'une courbe dont la contraction sur le plan est une quintique

ayant un point double en chacun des points Pi. On n'a pas de peine à trouver

déjà cinq quadriques dégénérées de la forme xqXi 0 pour 0 < / < 4. Les

quintiques correspondantes s'écrivent comme

Ci Ai + B pour 0 < i < 4

De plus, on trouve trois cônes quadratiques de sommet (1 : 0 : 0 : 0 : 0),
au-dessus de trois quadriques dans l'hyperplan donné par l'équation xo 0 :

X1X3 + *2 0, X1X4 — X2X3 — g4 X1X3 0, X2X4 + x2 — g4 X2X3 0

Voici les quintiques associées :

C5 : (xz-y2)(g0x2y + gx xy2 + g2xyz + 33 y2z 34 z3) 0,

c6(xz - y2)(-gmx2y ~ 3o *2z + (30 - 3134) xy2 - g2g4 xyz

- 32 xz2 + (32 - gig4)y2z - gj yz2 34 0,

Ci : 3ox5 + 23o3i x4y + 2g0g2x4z + g2x3y2 + 2(gxg2 + gm)x3yz

+ (02 + 3o34)*Y + (23133 + 3034)

+ (33o + 23233 + 3i34 )x2yz2+ (31 + 3234>x2z3 + (-30 + 3i34)Vz
+ (3i + 33 + 3234) xy2z2+ (332 + 3 + 33 xz4

+ (-32 + 3334)y3z2 + (33 + gl)y2z3 + 0.

On voit que les équations de C5 et C6 sont des combinaisons linéaires des

équations de C0, C2 et C4. Les quintiques {C0, Cu C2, C3, C4, C7} forment
une base du système des quintiques du plan ayant des points doubles en

Pi,...,P5; on vérifie qu'elles sont indépendantes et que la dimension du
système est égale à (5^2) -3-5 6, car les conditions imposées par les

points Pi sont indépendantes.
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Remarque. D'après le théorème de Riemann-Roch, tout diviseur de

degré 1 est linéairement équivalent à un diviseur effectif, c-à-d. à un point
rationnel. Pour éviter d'avoir de tels points sur notre courbe, il faut que
l'application deg: Div(C/Q) —» Z ait 5Z comme image.

Nous avons utilisé cela pour tamiser une certaine famille de quintiques
pour trouver notre exemple: on prend une quintique dont on a vérifié qu'elle
a des points locaux. On choisit quelques droites au hasard. L'intersection de
la quintique avec chacune des droites doit être un diviseur irréductible sur Q.
Sinon la quintique possède des points rationnels. Pour la courbe

324x5 - 36x4y-j-x3y2 + 45x2yz2 - x2z3 — xy2z2 - 9y5 + z5 0

par exemple, on ne trouve pas tout de suite un point rationnel. Mais quand on

coupe par la droite 3x — y + z 0, on trouve un polynôme qui se factorise :

9(2/ + 3yz - 3z2)(109 y3-96 + 99yz2 ~4z3),

ce qui montre qu'il y a un point rationnel quelque part.

3. Un corps de nombres

Soit C une racine primitive lleme de l'unité. On considère le corps
cyclotomique Q(C). Pour tous les résultats de ce paragraphe, je me réfère à

[CF], chap. 3. L'anneau des entiers Oq^q est égal àZ[(] et le discriminant vaut

disc(Q(0) — — 119. Le premier 11 est totalement ramifié : IIOqçq (1—C)10.

Un premier rationnel p ^ 11 se décompose en dix idéaux premiers si p 1

(mod 11), en cinq si p —I (mod 11) ; autrement il reste premier si p5 — 1

(mod 11) et dans les autres cas il se factorise en deux idéaux premiers.
Dans Q(0 il y a un sous-corps réel de degré 5, K Q(( + f), qui est le

corps fixe sous l'action de l'élément a d'ordre 2 dans Gal(Q(Q:Q). Comme
l'extension Q(0:Q est abélienne, K: Q est galoisienne. Le discriminant
disc(i^) doit diviser celui de Q(Q, ce qui entraîne que 11 est le seul premier
ramifié dans K ; il est aussi totalement ramifié. On trouve un générateur de

l'idéal au-dessus de 11Z en prenant 6 — Ç) 2 — — G ÖK.
Il est facile de calculer le polynôme minimal de 0 :

Q5 - 11#4 -h4403 — 1162 + 550 — 11 0.

De plus, l'anneau des entiers ÜK de K est égal à Z[<9]. Il est principal; un fait
que nous n'utiliserons pas. On a 11 Ok (#)5. On peut déduire de l'action de

a sur les idéaux que les premiers rationnels p ±1 (mod 11) se factorisent
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en cinq idéaux premiers distincts dans Ok tandis que les p ^ ±1 (mod 11)

différents de 11 restent premiers. PARI-GP® trouve une base des unités modulo

torsion, à savoir : {0 — 2, 0 — 3, 02 — 50 + 5, 6>4 — 8 63 + 21 02 — 20 0 + 5}

Proposition 3.1. Pour tout £ G Ok avec £ ^ (9) on a

N(0 NK:q(0 ±1 (mod 11).

Preuve. Puisque |7V(0| iV((0) et que (0 se factorise en idéaux

premiers, il suffit de montrer que N(p) ±1 (mod 11) pour tout idéal premier

| p (0), Soit p est au-dessus d'un premier rationnel p ± 1 (mod 11) et

*; alors sa norme est égal à ilzp, soit p est de la forme pOx et dans ce cas

j N(p) p5 ±1 (mod 11).

I Remarque. Dans l'appendice de [Co], Daniel Coray utilise cette extension

j K : Q pour construire une quintique qui contredit le principe de Hasse. Mais

| elle est lisse et donc de genre 6. L'équation s'écrit

^ N(x + Oy) z(z2 + xz + x2)(2z2 + xz + x2).

| Par ailleurs, le premier contre-exemple qui est une courbe plane lisse de

I degré 5 a été construit par Fujiwara dans [Fu].

j 4. Choix de la courbe

5 La quintique C qui nous servira de contre-exemple au principe de Hasse

sera une combinaison linéaire

-i C C7 + À0C0 + Ai Ci + À2C2 + À3C3 + À4C4

On choisit les coefficients gt et tels que les termes sans z s'écrivent comme
N(x — ey) NK:q(x — sy) et que les termes sans y s'écrivent comme N(x — rjz)

pour certains s et rj £ K. J'ai essayé avec un millier de choix différents de

(£,77) pour lesquels il existe des coefficients et À/. Parmi ceux auxquels
ma méthode de démonstration s'applique, j'ai choisi le plus simple:

e -l+4 e-d2eO*Ket77 -3 + 0 e

dont les normes sont

Af(x - ey) x5 — 6x4y + 10x3y2 — x2y3 — 6xy4 + y5

7V(x - rjz) x5 -j- 4x4z + 2x3z2 - 5x2z3 - 2xz4 + z5,
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et les coefficients

901 01 —3 02 § o, 04

Ao —6, Ai 1, A2 |, A3 — 1, A4 —2.

Cela nous donne la courbe C donnée par (1.1) dans le théorème principal.
Le polynôme minimal de u est p(X) 4 - 12X + 10X2 - 7X4 + 4X5,
qui est irréductible sur Q. Dans la suite on pose r := -\6N(x - ey) et
s :» — 16AÙ> - rjz). Puis on constate que l'équation (1.1) peut être réécrite
sous chacune des deux formes suivantes :

(4.1) r -\6N(x - ey) z-f,
(4.2) s -\6N(x - rjz) y • g,

où / et g sont des polynômes homogènes de degré 4 sur Z.

5. Démonstration du cas local

PROPOSITION 5.1. La courbe C donnée par (1.1) possède des points
lisses dans tous les complétés de Q.

Preuve. Comme le degré de C est impair, il est clair que C/R possède un
point lisse. On commence petit à petit par les premiers nombres premiers p.

Pour p 2: lorsque l'on remplace z par 8z dans l'équation (1.1), on
obtient une courbe dont la réduction modulo 2 est égale à

x5 + x2y3 + y5 + y4z 0

Elle a un point lisse (0 : 1 : 1) sur F2. Ensuite, on trouve facilement des

points lisses de la réduction de C modulo p pour 2 < p < 19: (1:1:2)
pour F3, (0:1:3) pour F5, (0:1:5) pour F7, (1:0:7) pour Fu,
(0:1:1) pour FB et (0 : 1 : -2) pour F17.

LEMME 5.2. Soit p > 19, soit C la réduction de C modulo p. On

suppose que C n'est pas une composante de sa Hessienne H. Alors C(¥p)
contient un point lisse.

Preuve. On suppose d'abord que C est irréductible. Soit c la normalisée
de C. Si elle est une courbe de genre 1, alors par le théorème de Hasse-Weil

pour la courbe lisse projective c, on a
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#c(Fp) > p + \ -2s/p>(VÏ9 l)2 > 11

La contraction sur C peut écraser 10 de nos points lisses, mais il reste au

moins un point lisse sur C(F/;)

Si C/Fp est de genre 0, ou si elle se décompose sur F/? en ayant une

composante simple définie sur F/;, le même argument montre qu'elle a toujours

suffisamment de points pour en avoir qui soient lisses. Le seul cas où il faut

s'inquiéter c'est quand elle se décompose sur F/; en cinq droites. Mais ce cas

est exclu par notre hypothèse, car cela voudrait dire que chaque point de C

serait un point d'inflexion, et se trouverait donc sur la Hessienne H.

Pour terminer la démonstration de la proposition, il suffit donc de calculer

la résultante de H avec C, en éliminant z, ce qui donne la réduction de

244 • (4x5 - \2x4y + lOx-y ~ W + 4 y5)6 • q(x : y),

où q(x : y) est un polynôme homogène, primitif, de degré 15. Ce n'est jamais
0 modulo un premier p > 2.

6. Démonstration du cas global

PROPOSITION 6.1. La courbe C donnée par (1.1) n'a pas de point
rationnel

Preuve. On suppose que (x : y : z) est une solution rationnelle de (1.1).
On peut supposer que x, y et z sont des entiers et qu'ils n'ont pas de facteur

en commun.

Soit p un premier rationnel différent de 2 et de 11, avec p ^ ±1 (mod 11).
Alors p ne divise pas r dans la formule (4.1): sinon x — ey — x+y — 46y + 62y

serait dans pOK. Le fait que { 1,<9, Q2, <93, 94 } est une Z-base de ÖK montre
alors que p diviserait y et x + y. Puisque p ne peut pas être facteur des trois
coordonnées, on aurait donc p\z, d'où p \ f. Mais/ 16z4 ^ 0 (mod p).

De la même manière, on montre que p ne divise pas s. Donc r et .y

sont composés de facteurs premiers 2, 11 et de premiers de la forme p ± 1

(mod 11). La même conclusion est vraie pour leurs facteurs y, z, / et g.
Considérons p 2 de plus près : rappelons-nous que 2Ok est un idéal premier.
On dénote par ß la valuation de y en 2Z, et par 7 celle de z.
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On suppose dans un premier temps que 7 > 0. Alors 2fx, ce qui dit
que x- ey<£2 Ok.Ceciimplique que 24 || autrement dit que 0 < 7 < 4
et que 24 7 \\f.(Ona utilisé la notation || pour dire «divise exactement»).
Calculons / modulo 16:

f 4y2 3x2 + 4y3 x+ 2/ • 5 + 4yz • x2 + 2 5x + y2z2 + 87z3 (mod 16).

Par hypothèse, yet z sont au moins une fois divisibles par 2, le terme à
droite est donc égal à 0 modulo 16, ce qui n'est pas possible car 16\f.

Occupons-nous à présent du cas ß 0 et 7 > 0 : on a x - ey
x + y— 4 9y+ Q2y 2 ÖK,alorscomme avant 24-7 Cette fois-ci on

regarde / modulo 4 :

f2 • y4 + 2xz y2 + z2 y22 (mod 4),

puisque 2 j y.Celaveut dire que 2 || fet donc 7 3. (On a vu dans 5.1 que
derrière cela «se cache» une solution 2-adique. On ne pourrait pas l'éliminer
en considérant p2.)

Comme derniere possibilité, on considéré ß / 0 et 7 0: on voit que
x - riz x +3z - 0z£ 2 Ok(car2 \ z), alors 24"'3 || et 0 < < On a

g 12x2yz+ 4xy2z + 10y3z + 4x2z2 + lOxyz2 + yz3 + 8z4 (mod 16).

Si ß < 2, alors

1 1
j 31

1 1

4
> 24=? \9\i=\yz\2 ^ >

4
•

Si ß>2, alors 4 | g,c-à-d.
1 1 ,,14

<:
24-/3 _ s 4

•

Autrement dit, ß 2.
En résumé, il y a deux cas possibles pour (ß, 7) : soit (0,3) soit (2,0).

Pour la fin de la démonstration, on se penche sur le premier 11:

PREMIER cas : y et Z ne sont pas divisibles par 11. On sait qu'ils sont
composés de facteurs 2 et p±1 (mod 11). Si (0,3), alors y ±1
(mod 11) et z ±23 ±8 (mod 11). Leurs réductions se trouvent sur une
des deux droites l\:y 4z ou l2 :y 7z définies sur F,,. Si (ß, 7) (2,0),
on a y ±4 (mod 11) et z ±1 (mod 11). Leurs réductions se trouvent
sur les même droites. Mais ces deux droites ne coupent la courbe C/Fn en
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7

10 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 • 0 •
7/ —0——©— -O 0 0

6 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0

ALr —0— 0 0 0

3 0 0 0 0 0 • • • 0 0

2 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 • 0 0

0 1 2 3 4 5 6 7 8 9 10

Figure
La réduction de la courbe C dans le plan affine z l sur F j i

aucun point rationnel sur Fn. La figure ci-dessus présente une «image» de

la courbe dans la carte affine z 1 sur Fi i. Les points noirs sont des points
lisses et les étoiles des points singuliers de C.

DEUXIÈME CAS: z est divisible par 11. Alors 11 | z/ — 16N(x — ey),
autrement dit, x — ey — x + y — 4Oy + 92y G (6). Pour cela il faut que
x + y G 11Z, c-à-d. x —y ^ 0 (mod 11). On calcule / modulo 11, sachant

que z 0 (mod 11) :

/ 64x4 — 224x3y + 108x2y2 + 116xy3 + IO3;4 4y4 (mod 11).

Dans le cas (ß,y) (0,3), il faut que y ± 1 (mod 11) puisqu'il n'est
pas divisible par 11. D'autre part, f 4 (mod 11) devrait être le produit de
21 2 (mod 11) et de facteurs p ± 1 (mod 11). Dans le cas (^,7) (2,0),
on a aussi une contradiction: 3; ±4, / 4- 44 1 (mod 11) et

/ 24 • (=tl) d=5 (mod 11).

TROISIÈME CAS: y est divisible par 11. Alors 11 | yg -16N(x-rjz).
Pour cela il faut que x + 3z G 11Z. Cette fois-ci on considère g modulo 11,
sachant que y 0 (mod 11) et x -3z (mod 11) :

g —96x4 - 224x3z + 68x2z2 + 160xz3 - 56z4 m 9z4 (mod 11).
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Comme avant, dans le cas (ß,y)(0,3) : z ±8 et 24 • (±1)
±5 ^ 9 • 84 3 (mod 11). Et dans le cas (2,0) : z ±1 et

g=22-(±1)^9 (mod 11).

7. La jacobienne de C

Il est certainement intéressant de connaître la jacobienne associée à la
courbe. Nous allons construire une application birationnelle

C --•> Jac(C) E

définie sur Q(cd) à l'aide d'une transformation de Cremona de degré 3 du
plan.

L'image de la conique B par l'application j est la droite

b =j(B) {xo xi x2 0} C S C Pq

Prenons le point R — (0 : 0 : 0 : 1 : tu) G b(Q(cu)) et calculons le plan tangent
à S en R :

TrS TRQ0n TrQi : {—loxo + x\ 0, lüxi — 0}

L'intersection de S avec TRS se décompose en deux droites b et e\, où la
seconde, qui correspond au diviseur exceptionnel de j au-dessus du point Pi,
est décrite par les équations suivantes :

X\ LOXo 0 X2 ÜJXi 0 X4 ÜJX3 (gi -f- up1 CJ^)xo 0

A ces trois équations correspondent trois cubiques du plan, passant par les
point Pi et ayant un point double en P\ :

A'0:(y-ujx)(xz- y2)0, : (z - ujy)(xz - 0,

A'2 : - go^x3 + (g0 - giu)x2y + (-g2u - g3iv2 - uj4)x2z

+ (gi+ 53w2 + uj4)xy2 + - g3u)xyz

+ (53 - 9*u)xz2 + (54 - u>)yz2 0.

Les trois cubiques {A^A'^A^} constituent une base du système linéaire
de telles cubiques définies sur Q(w). On peut constater que l'application
associée &' : Pq(w) —4 P^(w) est birationnelle car deux telles cubiques n'ont
qu'un point d'intersection hors des points P,. Elle contracte les quatre droites
P\Pj en des points Qj e P2(Q(cj)) et elle contracte la conique B en un
point <2i (0 : 0 : 1). D'autre part, elle éclate les points P,. Le diviseur
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exceptionnel au-dessus de P\ est la conique B' définie par les Q\ et les

diviseurs exceptionnels au-dessus des autres points Pj sont des droites.

Sous cette transformation $, la quintique C se simplifie en une cubique

lisse E' jQ(cj) passant par les quatre points Qj pour 1 < j < 5, d'équation

du style

0 (-5632 + 8448cj + 640cj2 + 5184o;4)x3 H + 1024 r3.

En reliant les deux autres intersections de E' avec B', on trouve un point
| T de E' défini sur Q(u) qui peut servir pour transformer E' en une forme de

j Weierstrass E (voir [Ca]), sans être obligé de monter dans un corps encore plus
j grand. Là, le miracle prédit par la théorie: E est définie sur Q (puisqu'elle
I est la jacobienne de C, une courbe définie sur Q). Sans donner les détails

du calcul, je présente les résultats: Y invariant

3443566663693729 1510093
r|_1 ooia/ — 26 /1, 2o 1 /

j
J 1289106508910 2 • 5 • 11 • 421 • 27836461

; la forme canonique

j Y2 X3 + AX +
"j avec

A -452233232961724703800443015164268

B -2199645470636900013045431798249893889294605994928

| la forme minimale globale de E

Y2 =X3 +X2 + a4X +

S avec

a4 -5583126332860798812351148335361

j a6 -3017346324604802976330769113064479136657958145

j et le conducteur arithmétique

j N=l 143864722620401428256678161374838265280

j 26 • 5 • 11 • 132 • 372 • 421 • 724972 • 1510092 • 27836461.

j Grâce à quelques réductions, on montre que le groupe de torsion de E{Q)
Jj est trivial. Par construction, (C,$) représente un élément d'ordre 5 du groupe
1 de Tate-Shafarevich III(E/Q). Si ce groupe est fini, son ordre est divisible
I par 25.



i/z C. WUTHRICH

Remerciements. Je tiens à exprimer mes plus vifs remerciements à

Sylvia Guibert, à Christian Liedtke, aux frères Bartholdi et surtout aux
professeurs Dino Lorenzini et Daniel Coray.

Les calculs monstrueux avec des milliers de polynômes ont été faits par
Mathematica® et PARI-GP®.

REFERENCES

[Be] BEAUVILLE, A. Surfaces algébriques complexes. Astérisque 54, 1978.
[Ca] Cassels, J.W. S. Lectures on Elliptic Curves. Cambridge Univ. Press, 1991.
[CF] CASSELS, J. W. S. et A. FRÖHLICH. Algebraic Number Theory. Academic Press

London, 1967.

[CCS] Colliot-ThélÈNE, J.-L., D. Coray et J.-J. Sansuc. Descente et principe de
Hasse pour certaines variétés rationnelles. J. reine angew. Math 320
(1980), 150-191.

[CP] Colliot-ThélÈNE, J.-L. et B. Poonen. Algebraic families of nonzero elements
of the Shafarevich-Tate group. J. Amer. Math. Soc. 13 (2000), 83-99.

[Co] CORAY, D.F. Arithmetic on Cubic Surfaces. PhD thesis. University of
Cambridge, 1974.

[Fi] Fisher, T. A. On 5 and 7 Descents for Elliptic Curves. PhD thesis. University
of Cambridge, 2000.

[Fu] Fujiwara, M. Hasse principle in algebraic equations. Acta Arith. 22 (1972/73)
267-276.

[Li] LIND, C.-E. Untersuchungen über die rationalen Punkte der ebenen kubischen
Kurven vom Geschlecht Eins. PhD thesis. University of Uppsala, 1940.

[Re] Reichardt, H. Einige im Kleinen überall lösbare, im Großen unlösbare
diophantische Gleichungen. J. reine angew. Math. 184 (1942), 12-18.

[Se] Selmer, E. The diophantine equation aX3 + bY3 + cZ3 0 Acta Math 85
(1951), 203-362.

(Reçu le 22 janvier 2001)

Christian Wuthrich

Section de Mathématiques
Case postale 240
CH-1211 Genève 24
Suisse
e-mail : christian.wuthrich@math.unige.ch


	UNE QUINTIQUE DE GENRE 1 QUI CONTREDIT LE PRINCIPE DE HASSE
	1. Introduction
	2. Quintiques planes de genre 1
	3. Un corps de nombres
	4. Choix de la courbe
	5. DÉMONSTRATION DU CAS LOCAL
	6. DÉMONSTRATION DU CAS GLOBAL
	7. La jacobienne de C
	...


