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156 M. MATTHEY AND U. SUTER

dimensions corresponding to the gap. At first sight, one could think that the
7v-cone is more powerful in this range. Unfortunately, this is not the case:
we show that the y-cone (or equivalently the ~-dimension function) is also
“blind” in some sense. Here is the precise statement.

PROPOSITION 10.1. Let Y be a connected finite CW-complex of dimension
< 2n, and let X = C; = Y U; &> be the mapping cone of a map
fi 8t ¥, with m > 1. Then, for x € K(X), one has

Y =0 = Yx) =0 forall I=1,....m.

In other words, if v-dim(x) < n+ m, then vy-dim(x) < n.

Proof. By assumption, one has H*(X; Z) = 0 for 2n < k < 2n+2m and
H>2"(X; Z) = Z. Let x € K(X) such that 4™ (x) = 0. By Proposition 2.2,
keeping the same notation, we have

ch(y* () = &(x) + Prp1(@1(), - .., Crpm)),

and 0 = ch(y""(x)) = Cp4m(x). Due to the “gap” in the cohomology of X,
we find that, for £k > n, we have

ch(v*(x)) = 0.

By the particular cohomological properties of X, the Chern character is
injective for elements of filtration > n in E(X) (see [AtHi]). Being zero
or of filtration > k (as Proposition 2.2 shows), v*(x) has to vanish for k > n.
This concludes the proof. [

*

11. A “DOUBLING FORMULA” FOR STIRLING NUMBERS OF THE SECOND KIND

In the present section, we calculate.the ~y-operations for the product
§2" x $?" . From this computation and Proposition 10.1, we deduce again the
7y-cone, as appearing in Theorem 7.1. This example illustrates that computing
the c-cone is in general easier than computing the ~y-cone. On the other hand,
the latter calculation leads to an interesting “doubling formula” for Stirling
numbers of the second kind. We will also conjecture the analogous formula

for Stirling numbers of the first kind.
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Keeping notations as in Section 7, we have
K" xS =7 x,0Z x,®Z - x1x) .

We still assume n < m. Using the known --operations for even-dimensional
spheres, one can easily calculate v* for S?* x $?* : For x = axj + bx, + Ix; x5,

one has clearly v*(x) = ~*(ax; + bxy) + v*(Ix;x,) and this allows one to
compute

V") = (1) m 4+ g — 1)!

n

: (lS(m—l—n, m—l—q)—abz
k=q

S, H)S(m, m+ g — k)
m+qg—1 ) " X1X2
k(")
for ¢ > 1; in particular

Y = (=)™ M+ m—1)! — ab n—D!m—1D) xixy.

For ™, we have to distinguish the case n = m from the case n < m. One
gets

V') = (D" lam— D x + (D" b= 1) xy + (— 1))

m—1
(m—1)! (lS(Zm, m)—ab Y S(m, k]z?i"f’l)m — k)) X%
k=1 k

4 when n = m, whereas

V') = D" b m =D + (1) — 1!
m—1
: (lS(n +m, m) — ab Z S, k)S’(nni,lm _ k)> - X1
k=1 k( k )

§ when n < m.

| We want to compute the y-dimension of x = axy +bxy + Ixixy. If [ =0,
the result is clear. We can now assume that [ £ 0. If [ is different from
| ab(n—1)!(m—1)!/(n+m—1)!, we see that v-dim(x) = n+m. On the other
® side, if  has precisely this value, then 7™(x) # 0, because in this case b # 0,
and by Proposition 10.1 we get ~-dim(x) = m precisely. This gives another
| proof of Theorem 7.1.

Let us now pass to the “doubling formula”.
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THEOREM 11.1. Let g < n <m be positive integers; then

n

Sim+n, m+q) = n("+':_1) Z
k=g

S(n, k)S(m, m+ g — k)

(")

We called this a “doubling formula” because, particularizing to n = m,
we get an expression allowing one to compute S(2n, n + ¢) in terms of the
numbers S(n, k) with g <k <n-—1.

Proof. This is an immediate consequence of Proposition 10.1 and the
above computations. [

An alternative proof would be to invoke Theorem 7.1 rather than Propo-
sition 10.1.

After trying to verify on a computer the analogous formula for Stirling
numbers of the first kind, namely

=~

s, ) =) (k) Cr)St—k+, 7,

J

I
=

we were led to conjecture it:

THEOREM 11.2. Let g < n < m be positive integers, then
ety Z s(n, K)s(m, m+q — k).

: ()

s(m+n, m+ q) ——-n(
k=q

We call it a “theorem”, since, after we had informed him about Theo-
rem 11.1 and our conjecture, Al Lundell sent us a proof of the latter. The
elegant proof is “elementary” in the following sense: it uses only some basic
formulas for Stirling numbers (such as generating functions) and a contour
argument in the computation of an integral, but no K-theory. Moreover, his
proof encompasses the Stirling numbers of both the first and the second kind
in a unified way.
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