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Remark 9.6.

i) This shows that [x{, x2] generates ttu(BU(3)) Z/30 and that the map

j* : nn(BU(3)) —> nn(BU(5)) is injective.

ii) We were also able to prove this theorem without appealing to results

on homotopy groups of BU(n). Using spectral sequence arguments, we have

computed the first few stages of the Moore-Postnikov tower of the map

BSU(3) —> BSU{5). This computation, being extremely lengthy, is not given

here (see [Matt]).

Now we move on to the product S6 x S8.

THEOREM 9.7. For the product S6 x58, one has

K+(S6 x S8) - KC(S6 x S8) K7(S6 x S8).

The latter is described in Theorem 7.1.

Proof. By Lundell's tables [Lun] (see also [Mim]), one has

7rö(£t/(4)) SS Z/60 and nn(BU(fi)) Z/720

Corollary 8.3 shows that [x\, x2] is of order 60 in n\3(BU(6)). By naturality,
the map jm — ti\2(/), induced by j: BU(4) —» BU(6), takes the Whitehead

product [xux2] e tti3(BU(4)) to [xu x2] C ti\3{BU(6)). This implies that

[x\, x2] is of order 60 in iri3(BU(4)) too, and that [axu bx2] vanishes

in ti\3(BU(4)) precisely when it is zero in ti\3{BU{6)). Together with
Theorem 8.2, this completes the proof.

Remark 9.8. The proof shows that [x{l x2] is a generator of the group
TT\3(BU(4)) Z/60 and that the map j* : wn(BU(4f) —> 3{BU{6)) is

injective.

10. "Gaps in cohomology" and the 7-cone

In the present section, we are interested in spaces having a "gap in
cohomology", more precisely we look at spaces obtained by attaching a

single large-dimensional cell to a finite CW-complex Y. For such spaces,
the integral cohomology is zero between the dimension of Y and the top-
dimensional class. The products Sn x Sm are typical examples (see Section 8).
For this kind of spaces, the c-cone obviously cannot give information in the
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dimensions corresponding to the gap. At first sight, one could think that the
7-cone is more powerful in this range. Unfortunately, this is not the case:
we show that the 7-cone (or equivalently the 7-dimension function) is also
"blind" in some sense. Here is the precise statement.

PROPOSITION 10.1. Let Y be a connected finite CW-complex of dimension
< 2n, and let X Cf Y U/ e2n+2m be the mapping cone of a map
f: S2n+2m~l —* Y, with m > 1. Then, for x G K(X), one has

7n+m(x) 0 ==>• 7n+/(x) 0 for all I 1,..., m

In other words, if 7~dim(x) <n + m, then 7~dim(x) < n.

Proof By assumption, one has Hk(X; Z) 0 for 2n<k< 2n + 2m and
H2n+2m(X; Z) Z. Let a G K(X) such that jn+m(x) 0. By Proposition 2.2,
keeping the same notation, we have

chrfix)) ck(x)+ Pk+l(C,
and 0 ch(jn+m(x)) cn+m(x). Due to the "gap" in the cohomology of X,
we find that, for k > n, we have

ch(^k(x)) 0.

By the particular cohomological properties of X, the Chern character is
injective for elements of filtration > n in KÇX) (see [AtHi]). Being zero
or of filtration > k (as Proposition 2.2 shows), ^k(x) has to vanish for k > n.
This concludes the proof.

11. A "DOUBLING FORMULA" FOR STIRLING NUMBERS OF THE SECOND KIND

In the present section, we calculate. the 7-operations for the product
S2n x S2m. From this computation and Proposition 10.1, we deduce again the

7-cone, as appearing in Theorem 7.1. This example illustrates that computing
the c-cone is in general easier than computing the 7-cone. On the other hand,
the latter calculation leads to an interesting "doubling formula" for Stirling
numbers of the second kind. We will also conjecture the analogous formula
for Stirling numbers of the first kind.
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